4.1 An op amp with an open-loop gain of 10^6 and $V_{cc} = 12$ V has an inverting-input voltage of 20 μ V and a non-inverting input voltage of 10 μ V. What is its output voltage?

4.13 Obtain an expression for the voltage gain $G = v_o/v_s$ for the circuit in Fig. P4.13.

Figure P4.13: Circuit for Problem 4.13.

4.20 Determine the linear range of the source v_s in the circuit of Fig. P4.20.

Figure P4.20: Circuit for Problems 4.20 and 4.21.

4.25 Determine the linear range of v_s for the circuit in Fig. P4.25.

[Note the +/- of each op-amp].

Figure P4.25: Circuit for Problem 4.25.

4.46 Relate v_o in the circuit of Fig. P4.46 to v_s . [Solve for v_o in terms of v_s)

Figure P4.46: Circuit for Problem 4.46.

4.51 Solve for v_o in terms of v_s for the circuit in Fig. P4.51.

Figure P4.51: Circuit for Problem 4.51.

4.52 Find the value of v_0 in the circuit in Fig. P4.52. [Note the +/- of each op-amp].

Figure P4.52: Circuit for Problem 4.52.

Selected Answers:

4.1 $v_o = -10 \text{ V}$ 4.13 $G = R_L(R_1 + R_2)/[R_1(R_3 + R_L)]$ 4.46 $v_o = -[(R_3/R_2)(R_1 + R_2)/(R_1 + R_s)]v_s$ 4.52 $v_o = -5.19 \text{ V}$