Electrical Engineering Laboratory Allan Hancock College

LABORATORY SAFETY RULES

1. Arrive to your laboratory section on time. Instructions on the experiment and pertinent safety issues are discussed during the first few minutes of lab.
2. No horseplay or running will be tolerated in the laboratory.
3. No bare feet or open sandals are permitted while working in the laboratory.
4. Food and beverages are not allowed in the laboratory.
5. Never energize a circuit or piece of equipment without complete knowledge of its purpose and the resulting actions.
6. Do not energize any equipment without first observing that no one is in a position to be injured by your actions.
7. Examine carefully all line cords and test leads before using them. Never plug in an AC power cord that is frayed or has a loose or otherwise defective plug.
8. Report all defective or questionable tools and equipment to the instructor.
9. Rings, watches and other metal jewelry are electrical conductors. They may come in contact with live circuits and cause serious shocks or burns. Remove these items while working in the lab.
10. Avoid contact with any voltage source. Turn off the power before working on a circuit. Voltages as low as 30 volts have been fatal!
11. Do not make circuit connections by hand while circuits are energized. This is especially dangerous with high current circuits.
12. Never work in the laboratory alone.
13. Wear safety glasses, gloves and protective clothing when required.
14. Report all injuries, no matter how slight, to your instructor.
15. Keep your work area neat and clean. At the end of each lab session, return all leads, wires, components, equipment, etc., to where you found them. Power off all equipment.
16. Make sure your equipment is placed in a secure and stable position on the workbench.
17. Know the locations of the fire extinguishers, first aid kits, and emergency AC power shut off switches. Be sure to know how to use these items in case of an emergency.
18. When working with exposed 120 -volt AC power in your circuit, have the instructor check your wiring before applying power.
19. Many precautions are required when soldering. Be sure you have detailed instruction in this area before you do any soldering in the laboratory.
20. Chemicals located in the laboratory can present a health hazard if proper safety precautions are not observed. Get approval from your instructor before using any chemicals.
21. Keep all exterior exit doors and aisles clear of any obstructions.

I (print name) \qquad , have read, understand, and agree to follow the above mentioned safety rules, and any other directions given to me in writing or verbally by my instructor, or any other Allan Hancock Engineering or Electronics instructor.

Electrical Engineering Laboratory Allan Hancock College

LABORATORY SAFETY RULES

1. Arrive to your laboratory section on time. Instructions on the experiment and pertinent safety issues are discussed during the first few minutes of lab.
2. No horseplay or running will be tolerated in the laboratory.
3. No bare feet or open sandals are permitted while working in the laboratory.
4. Food and beverages are not allowed in the laboratory.
5. Never energize a circuit or piece of equipment without complete knowledge of its purpose and the resulting actions.
6. Do not energize any equipment without first observing that no one is in a position to be injured by your actions.
7. Examine carefully all line cords and test leads before using them. Never plug in an AC power cord that is frayed or has a loose or otherwise defective plug.
8. Report all defective or questionable tools and equipment to the instructor.
9. Rings, watches and other metal jewelry are electrical conductors. They may come in contact with live circuits and cause serious shocks or burns. Remove these items while working in the lab.
10. Avoid contact with any voltage source. Turn off the power before working on a circuit. Voltages as low as 30 volts have been fatal!
11. Do not make circuit connections by hand while circuits are energized. This is especially dangerous with high current circuits.
12. Never work in the laboratory alone.
13. Wear safety glasses, gloves and protective clothing when required.
14. Report all injuries, no matter how slight, to your instructor.
15. Keep your work area neat and clean. At the end of each lab session, return all leads, wires, components, equipment, etc., to where you found them. Power off all equipment.
16. Make sure your equipment is placed in a secure and stable position on the workbench.
17. Know the locations of the fire extinguishers, first aid kits, and emergency AC power shut off switches. Be sure to know how to use these items in case of an emergency.
18. When working with exposed 120 -volt AC power in your circuit, have the instructor check your wiring before applying power.
19. Many precautions are required when soldering. Be sure you have detailed instruction in this area before you do any soldering in the laboratory.
20. Chemicals located in the laboratory can present a health hazard if proper safety precautions are not observed. Get approval from your instructor before using any chemicals.
21. Keep all exterior exit doors and aisles clear of any obstructions.

I (print name) \qquad , have read, understand, and agree to follow the above mentioned safety rules, and any other directions given to me in writing or verbally by my instructor, or any other Allan Hancock Engineering or Electronics instructor.

DATA SHEET, pg. 1/2

Expt. \#1 Ohm's Law, Resistance

Name
Lab Partner

Table 1-1 Direct Measurement of Resistor R_{x} (Step 2). Do not forget to include units.

Nominal Value	$\mathbf{4 7 0} \Omega$	$2.7 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$
Measured Value			
\%Difference with respect to (w.r.t.) Nominal Value			

Table 1-2 Calculated and Measured Current through $4.7 \mathrm{k} \Omega$ resistor.
Instructor:

Step \#. Current	Nominal Voltage (V)	Measured Voltage (V)	Resistance	Current $(\mathbf{m A})$	Calculated Resistance $(\mathrm{k} \Omega)$
7a. Calculated Current	6.00 V		Nominal, $4.7 \mathrm{k} \Omega$	calc	
7b. Calculated Current	6.00 V		Measured, from Table $1-1$	calc	
9. Measured Current	6.00 V			meas	
13. Measured Current	12.00 V			meas	

Are the current values in Steps $7 a$ and $7 b$ within 5% of each other?
YES NO
(circle one)
Are the current values in Steps 7 a and 9 within 5% of each other?
YES NO
(circle one)

Table 1-3 Voltage and Current Measurements: 470Ω and $2.7 \mathrm{k} \Omega$. Include units.

Nominal Voltage $\operatorname{across} \boldsymbol{R}_{x}$ (V)	Measured Voltage and Current			
	470- Ω resistor		2.7-k Ω resistor	
	$\nu_{x}(\mathrm{~V})$	$i(\quad)$	$v_{x}(\mathrm{~V})$	$i(\quad)$
0.0*	0.00000	0.00000	0.00000	0.00000
2.0				
4.0				
6.0				
8.0				
10.0				
12.0				
Calculated Resistance at 12.0 V	$\boldsymbol{R}_{x}=$		$\boldsymbol{R}_{x}=$	

* Include the point $(0,0)$ in the graphs.

DATA SHEET, pg. 2/2	Name
Expt. \#1 Ohm's Law, Resistance	Lab Partner

Table 1-4 Measured Voltages and Calculated Resistances for Single Voltmeter Method.
Measured value of known resistor (nominally $2.0 \mathrm{k} \Omega$), $\boldsymbol{R}_{\mathbf{1}}=$ \qquad .

Nominal Value, of "Unknown" \boldsymbol{R}_{x}	$v_{1}:$ Voltage across known resistor \boldsymbol{R}_{1} $(\mathrm{~V})$	$v_{x}:$ Voltage across "unknown" resistor \boldsymbol{R}_{x} (V)	Calculated \boldsymbol{R}_{x} Include units.
470Ω			
$2.7 \mathrm{k} \Omega$			
$4.7 \mathrm{k} \Omega$			

Summary

Table 1-5 Comparison of Resistance Values for Three Methods. Include units.

	Direct Measurement	Calculated from Measurements			
Nominal Value	Ohmmeter	Voltmeter-Ammeter Method (at $\boldsymbol{v}=12.0 \mathrm{~V})$	Single-Voltmeter Method		
\boldsymbol{R}_{x}	R_{x}	R_{x} Value	\% Error*	\boldsymbol{R}_{x} Value	\% Error*
470Ω					
$2.7 \mathrm{k} \Omega$					
$4.7 \mathrm{k} \Omega$					

> * \%Error with respect to directly measured value (or actual value) $$
\% \text { Error }=\frac{[\text { calculated }]-[\text { directly measured }]}{[\text { directly measured }]} \times 100 \%
$$

Instructor Initial:

DATA SHEET, pg. 1/3	Name
Expt. \#2a 3-Resistor Series Circuit	Lab Partner

Table 2-1 Resistances, Voltages and Currents for 3-Resistor Series Circuit. Do not forget units.

subscripts: m : measured; c : calculated from measured values			Instructor:
Nominal Measured Resistance Resistance	Measured Voltage (V)	Calculated Current (mA) (use measured $v \& R$)	$\begin{gathered} \text { Measured } \\ \text { Current } \\ (\mathrm{mA}) \\ \hline \end{gathered}$
$R_{1}=680 \Omega$	$v_{1, \mathrm{~m}}=$	$\boldsymbol{i}_{1, \mathrm{c}}=$	$i_{1, \mathrm{~m}}=$
$R_{2}=1.0 \mathrm{k} \Omega$	$v_{2, \mathrm{~m}}=$	$\boldsymbol{i}_{2, \mathrm{c}}=$	$\boldsymbol{i}_{2, \mathrm{~m}}=$
$R_{3}=3.0 \mathrm{k} \Omega$	$v_{3, \mathrm{~m}}=$	$i_{3, \mathrm{c}}=$	$i_{3, \mathrm{~m}}=$
Calculated Equivalent Resistance (from measured resistances R_{i}) $\boldsymbol{R}_{s, \mathrm{c}}=\Sigma \boldsymbol{R}_{k}=$	Calculated Total Voltage (from measurements $v_{k, \mathrm{~m}}$) $\left(\Sigma v_{k}\right)_{\mathrm{c}}=$		
Measured Equivalent Resistance $\boldsymbol{R}_{s, \mathrm{~m}}=$	Measured Total Voltage (Source Voltage) $v_{s}=V_{a b, \mathrm{~m}}=$		

Table 2-2 Equivalent Resistance and Voltage Drop across each Resistor. Do not forget units.

Quantity	Pre-lab Calculations (use nominal values)	In-Lab Calculations $\left(\Sigma R_{i}\right)$	Direct Measurements	\% Difference* (w.r.t. nominal)
Equivalent Resistance				
Voltage, v_{1}				
Voltage, v_{2}				
Voltage, v_{3}				
With respect to nominal value. $\left(\%\right.$ difference w.r.t. nominal) $=\frac{(\text { measured value) }-(\text { nominal value })}{(\text { nominal value) }} \times 100 \%$				

Table 2-3 Power Supplied or Dissipated by Components (for Calculated Power, use the sign convention: "-" if power is supplied, " + " if it is absorbed)

Component	Measured Resistance ($\Omega)$	Measured Voltage (\mathbf{V})	Measured Current (mA)	Calculated Power (mW)
Voltage Source				
R_{1}				
R_{2}				
R_{3}				

DATA SHEET, pg. 2/3

Expt. \#2b 3-Resistor Parallel Circuit

Name

Lab
Partner

Table 2-4 Resistances, Voltages and Currents for 3-Resistor Parallel Circuit. Do not forget units.

Nominal Resistance	Measured Resistance	Measured Current (mA)	Calculated Voltage (V) (use measured i \& R)	Measured Voltage (V)
$R_{1}=680 \Omega$		$i_{1, \mathrm{~m}}=$	$v_{1, \mathrm{c}}=$	$v_{1, \mathrm{~m}}=$
$R_{2}=1.0 \mathrm{k} \Omega$		$i_{2, \mathrm{~m}}=$	$v_{2, \mathrm{c}}=$	$v_{2, \mathrm{~m}}=$
$R_{3}=\mathbf{3 . 0} \mathrm{k} \Omega$		$i_{3, \mathrm{~m}}=$	$v_{3, \mathrm{c}}=$	$v_{3, \mathrm{~m}}=$
Calculated Equivalent Resistance (from measured resistances R_{i})$\boldsymbol{R}_{p, \mathrm{c}}=$		Calculated Total Current (from measurements $i_{k, \mathrm{~m}}$) $\left(\sum i_{k}\right)_{\mathrm{c}}=$		$V_{c d, \mathrm{~m}}=$
Measured Equivalent Resistance$\boldsymbol{R}_{p, \mathrm{~m}}=$		Measured Total Current (Source Current) $i_{\mathrm{m}}=$		

Table 2-5 Equivalent Resistance and Current through each Resistor.

Quantity	Pre-lab Calculations (use nominal values)	In-Lab Calculations $\left(R_{p, c}\right)$	Direct Measurements	\% Difference* (w.r.t. nominal)
Equivalent Resistance				
Total Current \boldsymbol{i}				
Current, \boldsymbol{i}_{1}				
Current, \boldsymbol{i}_{2}				
Current, \boldsymbol{i}_{3}				

* With respect to nominal value. $(\%$ difference w.r.t. nominal $)=\frac{(\text { measured value })-(\text { nominal value })}{(\text { nominal value })} \times 100 \%$

Table 2-6 Power Supplied or Dissipated by Components
(for Calculated Power, use the sign convention: "-" if power is supplied, " + " if it is absorbed)

Component	Measured Resistance ($\Omega)$	Measured Voltage (V)	Measured Current (mA)	Calculated Power (mW)
Voltage Source				
R_{1}				
R_{2}				
R_{3}				

DATA SHEET, pg. 3/3	Name
Expt. \#2c 2-Resistor Parallel Circuit	Lab Partner

Table 2-7 Resistances, Voltages and Currents for 2-Resistor Parallel Circuit.

Nominal Resistance	Measured Resistance	Measured Current (mA)	Calculated Voltage (V) (use measured i \& R)	Measured Voltage (V)
$R_{1}=680 \Omega$		$i_{1, \mathrm{~m}}=$	$\nu_{1, \mathrm{c}}=$	$\nu_{1, \mathrm{~m}}=$
$R_{2}=1.0 \mathrm{k} \Omega$		$i_{2, \mathrm{~m}}=$	$\nu_{2, \mathrm{c}}=$	$\nu_{2, \mathrm{~m}}=$
Calculated Equivalent Resistance (from measured resistances R_{i})$\boldsymbol{R}_{p, \mathrm{c}}=$		Calculated Total Current (from measurements $i_{k, \mathrm{~m}}$) $\left(\sum i_{k}\right)_{\mathrm{c}}=$		$V_{e f, \mathrm{~m}}=$
Measured Equivalent Resistance$\boldsymbol{R}_{p, \mathrm{~m}}=$		Measured Total Current (Source Current) $i_{\mathrm{m}}=$		

This page intentionally left blank.

DATA SHEET, pg. 1/2

Expt. \#3 Superposition

Name
Lab Partner

Table 3-1 Resistor Values.

Nominal Value	Measured Resistance $(\mathrm{k} \Omega$)	\%Difference (with respect to nominal)	Within Tolerance?
$1.0 \mathrm{k} \Omega$			
$2.0 \mathrm{k} \Omega$			
$2.2 \mathrm{k} \Omega$			
$3.0 \mathrm{k} \Omega$			

Table 3-2 Measured Voltage V_{x} and Current i_{x} for Case $I: v_{1}=+16.0 \mathrm{~V}, \boldsymbol{v}_{2}=\boldsymbol{+ 1 2 . 0} \mathrm{V}$.

Case	Voltage Source	Measured Supply Voltage (V)	Measured Voltage (V)	
Ia	$v_{1}=16.0 \mathrm{~V} ; v_{2}=0.0 \mathrm{~V}$	$v_{1}=$	$V_{x^{\prime}}=$	$i_{x^{\prime}}=$
Ib	$\nu_{1}=0.0 \mathrm{~V} ; \nu_{2}=12.0 \mathrm{~V}$	$v_{2}=$	$V_{x^{\prime \prime}}=$	$i_{x^{\prime \prime}}=$
$\begin{gathered} \mathrm{Ia}+ \\ \mathrm{Ib} \end{gathered}$	Sum of individual measurements (calculate)		$\Sigma V_{x k}=$	$\Sigma i_{x k}=$
Ic	Supply voltages acting together $v_{1}=16.0 \mathrm{~V} ; v_{2}=12.0 \mathrm{~V}$	$\begin{aligned} & v_{1}= \\ & v_{2}= \end{aligned}$	$V_{x}=$	$i_{x}=$

Table 3-3 Measured Voltage V_{x} and Current i_{x} for Case II: $v_{1}=8.0 \mathrm{~V}, \boldsymbol{v}_{\mathbf{2}}=\mathbf{- 1 2 . 0} \mathrm{V}$.

Case	Voltage Source	$\begin{gathered} \hline \text { Measured Supply } \\ \text { Voltage (V) } \end{gathered}$	Measured Voltage (V)	$\begin{aligned} & \hline \text { Measured Current } \\ & (\mathbf{m A}) \end{aligned}$
IIa	$v_{1}=8.0 \mathrm{~V} ; v_{2}=0.0 \mathrm{~V}$	$v_{1}=$	$V_{x^{\prime}}=$	$i_{x^{\prime}}=$
IIb	$v_{1}=0.0 \mathrm{~V} ; \nu_{2}=-12.0 \mathrm{~V}$	$\nu_{2}=$	$V_{x^{\prime \prime}}=$	$\boldsymbol{i}_{\mathrm{x}^{\prime \prime}}=$
$\begin{gathered} \mathrm{IIa}+ \\ \mathrm{IIb} \end{gathered}$	Sum of individual measurements (calculate)		$\Sigma V_{x k}=$	$\Sigma i_{x k}=$
IIc	Supply voltages acting together $v_{1}=8.0 \mathrm{~V} ; v_{2}=-12.0 \mathrm{~V}$	$\begin{aligned} & v_{1}= \\ & v_{2}= \end{aligned}$	$V_{x}=$	$i_{x}=$

DATA SHEET, pg. 2/2	Name
Expt. \#3 Superposition	Lab Partner

Table 3-4 Circuit Resistance Measurements.

Resistance	Step	Measured Resistance (Ω)
Resistance seen by \boldsymbol{v}_{1} (in \boldsymbol{v}_{1}-only circuit)	7	
Resistance seen by \boldsymbol{v}_{2} (in \boldsymbol{v}_{2}-only circuit)	12	
Resistance measured across the 2.2-k Ω resistor	19	

DATA SHEET, pg. 1/2
 Expt. \#4 Equivalent Circuits

Name
Lab
Partner

Table 4-1 Resistance Values.

Nominal Value	Measured Resistance (k Ω)	\% Difference (\%) (with respect to nominal)	Is it within Tolerance?
$1.0 \mathrm{k} \Omega$			
$2.0 \mathrm{k} \Omega$			
$3.0 \mathrm{k} \Omega$			
$10 \mathrm{k} \Omega$ pot (outer terminals)			

Table 4-2 Circuit Measurements. Source voltage: $\boldsymbol{v}_{\boldsymbol{s}}=$ \qquad .

R_{L}	Load Resistor \boldsymbol{R}_{L}	$\begin{gathered} \text { Voltage } \\ \text { across } 2 \mathrm{k} \Omega \\ V_{2 \mathrm{k}} \end{gathered}$	$\begin{gathered} \text { Load } \\ \text { Voltage } \\ V_{L} \end{gathered}$	Source Current i_{s}	Source Power P_{s}	Load Power P_{L}	Efficiency
nominal	measured	measured	measured	$V_{2 k} / R_{2 \mathrm{k}}$	$v_{s} \times i_{s}$	$\frac{V_{L}^{2}}{R_{L}}$	$\frac{P_{L}}{P_{s}} \times 100 \%$
Units: Ω	Ω						\%
200							
300							
500							
700							
1.0k							
2.0k							
3.0k							
5.0k							
7.0k							
10k							

*Remember to take four additional measurements near and around the estimated value of R_{L} that gives the greatest P_{L}; these four measurements should give a better estimate of the R_{L} that gives the maximum load transfer. Do not select values that are too close together. As more measurements are taken, if possible, revise the approximation of R_{L} for maximum power transfer.

DATA SHEET, pg. 2/2	Name
Expt. \#4 Equivalent Circuits	Lab Partner

Table 4-3 Thevenin Equivalent.

	CALCULATIONS		DIRECT MEASUREMENTS [Steps 15-17]	Calculated $\boldsymbol{R}_{T h}$ from measured $\boldsymbol{V}_{T h}$ and measured $\boldsymbol{i}_{s c}$ [Step 19]
$\boldsymbol{V}_{\boldsymbol{T h}}$	Nominal Values [Step 13]	Measured Values [Step 14]		$V_{T h, \mathrm{c}}$
$\boldsymbol{R}_{\boldsymbol{T h}}$	$R_{T h, \mathrm{n}}$	$V_{T h, \mathrm{~m}}$	$R_{T h, \exp }=V_{T h, \mathrm{~m}} / i_{s c, \mathrm{~m}}=$	

Table 4-4 Thevenin Circuit Measurements. $V_{T h}=$ \qquad ; $\boldsymbol{R}_{\text {Th }}=$ \qquad .

$\boldsymbol{R}_{\boldsymbol{L}}$	Load Resistor $\boldsymbol{R}_{\boldsymbol{L}}$	Load Voltage $\boldsymbol{V}_{\boldsymbol{L}}$	Source Current $\boldsymbol{i}_{\boldsymbol{s}}$	Source Power $\boldsymbol{P}_{\boldsymbol{s}}$	Load Power $\boldsymbol{P}_{\boldsymbol{L}}$	Efficiency
nominal	measured	measured	$\frac{V_{T h}}{R_{T h}+R_{L}}=\frac{V_{L}}{R_{L}}$	$V_{T h} \times i_{s}$	$\frac{V_{L}^{2}}{R_{L}}$	$\frac{P_{L}}{P_{s}} \times 100 \%$
Units: Ω						$\%$
200						
300						
500						
700						
1.0 k						
2.0 k						
3.0 k						
5.0 k						
7.0 k						
10 k						
$\boldsymbol{R}_{\text {Th }}=$						

Expt. 4

Expt. 4

Name

Lab
Partner

Expt. \#5 Op Amps

Table 5-1 Resistance Values for Op-Amp Circuit

Nominal Value	Measured Resistance (k Ω)	\% Difference (w.r.t. nominal)	Is Resistance within Tolerance?
$R_{1}=10 \mathrm{k} \Omega$			
$R_{2}=33 \mathrm{k} \Omega$			

Table 5-2 Op-Amp Circuit Amplification $\boldsymbol{v}_{\boldsymbol{i}}=\mathbf{0 . 5} \mathrm{V}$ DC.
Supply Voltages (measured): $V^{+}=$ \qquad V; $V^{-}=$ \qquad V.

| | $\begin{array}{c}\text { Pre-Lab Calculations } \\ \text { (predictions) } \\ \text { (using nominal values) }\end{array}$ | | | In-Lab Measurements | | |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |$]$

Table 5-3 Input Voltage - Output Voltage Measurements (record data down left, then right column)

5-3a Inverting Op-Amp Circuit			
$V^{+}=$		V^{-}	$V^{-}=$
$v_{i}(\mathrm{~V})$	$V_{o}(\mathrm{~V})$	$v_{i}(\mathrm{~V})$	$V_{o}(\mathrm{~V})$
0.0000	0.000		

5-3b Non-Inverting Op-Amp Circuit			
$V^{+}=$			
$v_{i}(\mathrm{~V})$	$V_{o}(\mathrm{~V})$	$v_{i}(\mathrm{~V})$	$V_{o}(\mathrm{~V})$
0.000	0.000		

DATA SHEET, pg. 2/2

Expt. \#5 Op Amps

Name
Lab Partner

Table 5-4 Saturation Voltages, Estimated from In-lab Hand-plots of V_{o} vs. v_{i}.
Measured Supply Voltages: $\mathrm{V}^{+}=$ \qquad V ; $\mathrm{V}^{-}=$ \qquad V.

	Input Voltage $V_{i, \text { sat }}(\mathrm{V})$	Output Voltage $V_{o, \text { sat }}(\mathrm{V})$
Inverting Op-Amp Circuit		
Non-Inverting Op-Amp Circuit		

Table 5-5 Output Voltage (Load Voltage) for Various Load Resistors for Inverting Op-Amp Circuit. $v_{i}=1.0 \mathrm{~V}$ DC.

R_{L}	470Ω	$2.0 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$
Measured Resistance $(\mathrm{k} \Omega)$			
Measured Input Voltage, $v_{i}(\mathrm{~V})$			
Output Voltage $=$ Load Voltage $V_{o}=V_{L}(\mathrm{~V})$			
Load Current, $i_{L}(\mathrm{~mA})$			

DATA SHEET, pg. 1/4

Expt. \#8: Oscilloscope

Name
Lab Partner

Table 8-1 PROBE ADJUST and HUMAN ANTENNA Signals.

	Shape of Signal	Peak-to-Peak Voltage, \boldsymbol{V}_{p-p} (V)	Measured Period, \boldsymbol{T} (\quad),	Calculated Frequency, \boldsymbol{f} (Hz)	Replicated Probe Adjust Signal?
Probe Adjust					Instructor Init.:
Human Antenna					

Table 8-2a Sine wave with DC Offset: $v(t)=2.0+3.0 \cos [2 \pi(500) t] \mathrm{V}$.

Step	Question	Answer	
12	What is $v(t)_{\max } ?$ What is $v(t)_{\min } ?$	$V_{\max :}$	
15	For 2.0 V/DIV, how many divisions equal 1.0 volt?	For 0.5 mSEC/DIV, how many divisions equal 1.0 second?	
16	AC Coupling measurement. How many divisions tall is the signal (from top to bottom)? How many volts tall is it (top to bottom)?	Divisions:	Volts:
19	AC Coupling measurement. What is the period of the signal in divisions? What is the period T in milliseconds?	Divisions:	T (msec):

[^0]| DATA SHEET, pg. 2/4 | Name |
| :--- | :--- |
| Expt. \#8: Oscilloscope | Lab
 Partner |

Table 8-2b Sine wave with DC Offset: $v(t)=2.0+3.0 \cos [2 \pi(500) t] \mathrm{V}$.

Step	Question	Answer	
Each step below (\#23, 25) should start at 2.0 V/DIV and $0.5 \mathrm{mSEC} / \mathrm{DIV}$. CW: Clockwise, CCW: counter-clockwise.			
23	What happens to the appearance of the signal when the VOLT/DIV knob is turned 1 click CW? What is the new VOLT/DIV setting?		New VOLTS/DIV
25	What happens to the appearance of the signal when the VOLT/DIV knob is turned 1 click CCW? What is the new VOLT/DIV setting?		New VOLTS/DIV
Each step below (\#30, 32) should now start at 1.0 V/DIV and $0.5 \mathrm{mSEC} / \mathrm{DIV}$. Note the new volts/div setting. CW: Clockwise, CCW: counter-clockwise.			
30	What happens to the appearance of the signal when the SEC/DIV knob is turned 1 click CW? What is the new SEC/DIV setting?		New SEC/DIV
32	What happens to the appearance of the signal when the SEC/DIV knob is turned 1 click CCW? What is the new SEC/DIV setting?		New SEC/DIV

DATA SHEET, pg. 3/4	Name
Expt. \#8: Oscilloscope	Lab Partner

Table 8-3 Voltage Measurement Exploration: $v(t)=2.0+3.0 \cos [2 \pi(500) t] \mathrm{V}$.

Step	Question	Answer
38: DC Coupling		
39	VOLTMETER/DC (V)	
40	VOLTMETER/+PEAK (V)	
41	VOLTMETER/-PEAK (V)	
42	VOLTMETER/PEAK-PEAK (V)	
43	What is the scope message when the signal is zoomed so it no longer fits on the display?	
$44:$ AC Coupling (repeat above measurements) - record displayed values in AC mode-only.		
39	VOLTMETER/DC (V)	
40	VOLTMETER/+PEAK (V)	
41	VOLTMETER/-PEAK (V)	
42	VOLTMETER/PEAK-PEAK (V)	

Explain the difference between DC and AC coupling measurements in words - why are they different? Do the answers of Table 8-3 make sense with regards to Equation 8.1? Explain why or why not? (attach a separate sheet if necessary).

DATA SHEET, pg. 4/4	Name
	Lab Expt. \#8: Oscilloscope

Table 8-4 Time Measurement Exploration: $v(t)=2.0+3.0 \cos [2 \pi(500) t] \mathrm{V}$.

Step	Question	Answer
COURSOR and COUNTER MEASUREMENTS. Use AC Coupling.		
52	Half-period cursor measurement, maximum to minimum.	
53	Half-period cursor measurement: intersection of waveform with printed horizontal line corresponding to ground $(\mathrm{V}=0)$.	
54	Which measurement technique will give a more precise measurement, Step 52 or Step 53. Explain why (think about the best way to determine where a point is).	
57	Phase Angle half-period cursor measurement.	
60	Scope frequency measurement of FG 900 Hz signal.	
60	Calculated period for 900 Hz (use frequency measured in Step 60).	
61	Measured period for 900 Hz signal. Does it agree with your calculation?	

DATA SHEET, pg. 1/3
 Expt. \#9 R.M.S. Measurements

Name
Lab Partner

Table 9-1 Voltage and Frequency Measurements: $4.0 \mathrm{~V}_{\mathrm{pp}}, 1.0 \mathrm{kHz}$ sine wave.
Measured source signal: $\boldsymbol{V}_{p p}=\ldots \quad V$ (on scope).

	Function Generator Display*	Predicted Values (pre-lab; nominal)	Scope Measurement	DMM Measurement	\% Difference in $V_{\text {rms }}$ (DMM w.r.t. pre-lab values)
$V_{r m s}(\mathbf{V})$					
$f(\mathbf{H z})$					
Period (msec)					

* Write "n/a" (not applicable) in this column if there is no display on the function generator.

Table 9-2 Voltage and Frequency Measurements: $3.0 \mathrm{~V}_{\mathrm{pp}}, \mathbf{5 0 0 ~ H z}$ sine wave.
Measured source signal: $\boldsymbol{V}_{p p}=$ \qquad V.

	Function Generator Display*	Predicted Values (pre-lab; nominal)	Scope Measurement	DMM Measurement	\% Difference in $V_{r m s}$ (DMM w.r.t. pre-lab values)
$V_{r m s}(\mathbf{V})$					
$f(\mathrm{~Hz})$					

* Write " n / a " (not applicable) in this column if there is no display on the function generator.

Table 9-3 Voltage and Frequency Measurements: $6.0 \mathrm{~V}_{\mathrm{pp}}, \mathbf{2 . 0} \mathbf{~ k H z}$ square wave.
Measured source signal: $\boldsymbol{V}_{p p}=$ \qquad V.

	Function Generator Display*	Predicted Values (pre-lab; nominal)	Scope Measurement	DMM Measurement	\% Difference in $V_{\text {rms }}$ (DMM w.r.t. pre-lab values)
$V_{r m s}(\mathrm{~V})$					
$f(\mathrm{~Hz})$					

* Write " n / a " (not applicable) in this column if there is no display on the function generator.

DATA SHEET, pg. 2/3	Name
Expt. \#9 R.M.S. Measurements	Lab Partner

Table 9-4 Voltage and Frequency Measurements:
$6.0 \mathrm{~V}_{\mathrm{pp}}, 2.0 \mathrm{kHz}$ square wave, +1.0 V DC Offset.
Measured source signal: $\boldsymbol{V}_{p p}=$ \qquad $\mathrm{V}, V_{D C}=$ \qquad V.

	Function Generator Display*	Predicted Values (pre-lab; nominal)	Scope Measurement	DMM Measurement	\% Difference in $V_{\text {rms }}$ (DMM w.r.t. pre-lab values)
$V_{\text {rms }}(\mathrm{V})$					
$f(\mathrm{~Hz})$					

* Write " n / a " (not applicable) in this column if there is no display on the function generator.

Table 9-5 R.M.S. Current Calculation and Measurement:
$9.0 \mathrm{~V}_{\mathrm{pp}}$, 200 Hz sine wave; $2.2 \mathrm{k} \Omega$ resistor.
Measured source signal: $\boldsymbol{V}_{p p}=$ \qquad V.

	Calculated Value from Scope Reading	DMM Measurement	\% Difference w.r.t. value calculated from scope measurement
$\boldsymbol{i}_{r m s}(\mathrm{~mA})$			

DATA SHEET, pg. 3/3
Expt. \#9 R.M.S. Measurements

Name

Lab
Partner

Table 9-6 Oscilloscope Voltage Measurements:
$9.0 \mathrm{~V}_{\mathrm{pp}}$, 200 Hz sine wave; $1.0 \mathrm{k} \Omega$ and $2.0 \mathrm{k} \Omega$ resistors in series.

Step	Reading	$V_{p-p}(\mathrm{~V})$	Remark
15	Ch. 2 (probe across $2.0 \mathrm{k} \Omega$, Ch. 1 not connected)		
16	Ch. 2 (with Ch. 1 probe across $1.0 \mathrm{k} \Omega$)		
18	Ch. 1 (across both resistors)		
19	Ch. 2 (across $2.0 \mathrm{k} \Omega$)		
20	Calculated Ch. 1 minus Ch. 2		
21	Measured Ch. 1 minus Ch. 2		

Table 9-7 DMM $V_{\text {rms }}$ Measurements:
$9.0 \mathrm{~V}_{\mathrm{pp}}$, 200 Hz sine wave; $1.0 \mathrm{k} \Omega$ and $2.0 \mathrm{k} \Omega$ resistors in series.

Voltage	$V_{r m s}(\mathrm{~V})$	Does the distribution of $V_{r m s}$ between the 1.0 and $2.0 \mathrm{k} \Omega$ resistors agree with voltage division? Explain why the voltage distribution should or should not agree.
Measured across $1.0 \mathrm{k} \Omega$		
Measured across $2.0 \mathrm{k} \Omega$		
Sum of individual measurements (calculate)		
Measured across both resistors		
\% Difference (sum of individual voltages w.r.t. direct measurement)		

This page intentionally left blank.

DATA SHEET, pg. 1/4
 Expt. \#10 AC Circuits/Phasors

Name
Lab Partner

Table 10-1 Resistor, Capacitor and Inductor Values. Include units.

Element	Measured Value	\% Error (w.r.t. nominal)
$2.0 \mathrm{k} \Omega$ resistor	$\boldsymbol{R}=$	
33 mH Inductor inductance and DC resistance DC is when $f=0 \mathrm{~Hz}$	$\boldsymbol{R}_{\boldsymbol{L}}=$	n / a
Large Inductor inductance and DC resistance	$\boldsymbol{L}=$	n / a
$0.1 \mu \mathrm{~F}$ Capacitor	$\boldsymbol{C}=$	n / a

Table 10-2 Voltage and Current Measurements, Calculation of Impedance and Inductance.
4.0 Vp-p, 400 Hz sine wave. Include units.

Measured source signal: $\boldsymbol{V}_{p p}=\quad$ V, $f=$ \qquad Hz .

	$\mathbf{3 3} \mathbf{~ m H}$ Inductor	Large Inductor
Predicted Magnitude of Total Impedance, $\left\|\mathbf{Z}_{L}\right\|$		
$V_{r m s}$ across inductor (measured)		
$I_{r m s}$ through inductor (measured)		
$\left\|\mathbf{Z}_{L}\right\|$, calculated from measured r.m.s. values		
\% difference in $\left\|\mathbf{Z}_{L}\right\|$ with respect to predicted value		
L, calculated from measured r.m.s. values		
\% difference in L w.r.t. directly measured value		

DATA SHEET, pg. 2/4
 Expt. \#10 AC Circuits/Phasors

Name

Lab
Partner

Table 10-3 Calculated Impedance, Current, Voltage: RC Circuit, 10.0 Vpp, 600 Hz sine wave.
Nominal values: $R=2.0 \mathrm{k} \Omega, C=0.1 \mu \mathrm{~F}$
Assume the voltage source has zero phase: $\mathbf{V}_{\mathbf{S}}=V_{S} \angle 0^{\circ}$.

Quantity	Value and Units
$\mathbf{Z}_{\text {total, }}$ rectangular form (calculated from measured values)	
$\mathbf{Z}_{\text {total }}$, polar form (calculated from measured values)	
Phasor Current, \mathbf{I} (polar form, calculated from $\mathbf{V}_{\mathbf{S}}=5 \angle 0^{\circ} \mathrm{V}$	
and $\mathbf{Z}_{\text {total }}$)	
Phasor Voltage, $\mathbf{V}_{\mathbf{C}}$ (polar form, calculated from \mathbf{I} and \mathbf{Z}_{C})	
Phasor Voltage, $\mathbf{V}_{\mathbf{R}}$ (polar form, calculated from \mathbf{I} and \mathbf{Z}_{R})	

Table 10-4 Measured Voltages: RC Circuit, $10.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$, $\mathbf{6 0 0} \mathrm{Hz}$ sine wave.
Assume the voltage source has zero phase: $\mathbf{V}_{\mathbf{S}}=V_{S} \angle 0^{\circ}$.
Measured source signal: $\boldsymbol{V}_{\boldsymbol{p p}}=$ \qquad V, $f=$ \qquad Hz .

Quantity	Scope, $\boldsymbol{V}_{\boldsymbol{p}}(\mathbf{V})$ (measured)	Scope, $\boldsymbol{V}_{r m s}(\mathbf{V})$ (calculated)	DMM, $\boldsymbol{V}_{r m s}(\mathbf{V})$ (measured)
Source Voltage, V_{S}			
Capacitor Voltage, V_{C}			
Resistor Voltage, V_{R}			

Table 10-5 Measured Phase Angles: RC Circuit, 10.0 Vp-p, 600 Hz sine wave.
Assume the voltage source has zero phase: $\mathbf{V}_{\mathbf{S}}=V_{S} \angle 0^{\circ}$.
Give angle as positive or negative, depending on if it leads or lags.

Quantity	Value and Unit
Capacitor Phase Angle, ϕ_{C} (measured, with respect to $\mathbf{V}_{\mathbf{S}}$)	
Resistor Phase Angle, ϕ_{R} (measured, with respect to $\mathbf{V}_{\mathbf{s}}$)	
Does $\mathbf{V}_{\mathbf{C}}$ lead or lag $\mathbf{V}_{\mathbf{s}}$?	
Does $\mathbf{V}_{\mathbf{R}}$ lead or lag $\mathbf{V}_{\mathbf{s}}$?	

DATA SHEET, pg. 3/4
 Expt. \#10 AC Circuits/Phasors

Name
Lab
Partner

Table 10-6 Calculated Impedance, Current, Voltage: RC Circuit, $10.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, 1.0 \mathrm{kHz}$ sine wave. Nominal values: $R=2.0 \mathrm{k} \Omega, C=0.1 \mu \mathrm{~F}$ Assume the voltage source has zero phase: $\mathbf{V}_{\mathbf{S}}=V_{S} \angle 0^{\circ}$.

Quantity	Value and Units
$\mathbf{Z}_{\text {total }}$, rectangular form (calculated from measured values)	
$\mathbf{Z}_{\text {total }}$, polar form (calculated from measured values)	
Phasor Current, \mathbf{I} (polar form, calculated from $\mathbf{V}_{\mathbf{S}}=5 \angle 0^{\circ} \mathrm{V}$ and $\mathbf{Z}_{\text {total }}$)	
Phasor Voltage, $\mathbf{V}_{\mathbf{C}}$ (polar form, calculated from \mathbf{I} and \mathbf{Z}_{C})	
Phasor Voltage, $\mathbf{V}_{\mathbf{R}}$ (polar form, calculated from \mathbf{I} and \mathbf{Z}_{R})	

Table 10-7 Measured Voltages: RC Circuit, $10.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}, 1.0 \mathrm{kHz} \text { sine wave. }}$
Assume the voltage source has zero phase: $\mathbf{V}_{\mathbf{S}}=V_{S} \angle 0^{\circ}$.
Measured source signal: $\boldsymbol{V}_{p p}=$ \qquad V, $f=$ \qquad Hz .

Quantity	Scope, $\boldsymbol{V}_{p}(\mathbf{V})$ (measured)	Scope, $\boldsymbol{V}_{r m s}(\mathbf{V})$ (calculated)	DMM, $\boldsymbol{V}_{r m s}(\mathbf{V})$ (measured)
Source Voltage, V_{S}			
Capacitor Voltage, V_{C}			
Resistor Voltage, V_{R}			

Table 10-8 Measured Phase Angles: RC Circuit, $10.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$, 1.0 kHz sine wave.
Assume the voltage source has zero phase: $\mathbf{V}_{\mathbf{S}}=V_{S} \angle 0^{\circ}$.
Give angle as positive or negative, depending on if it leads or lags.

Quantity	Value and Unit
Capacitor Phase Angle, ϕ_{C} (measured, with respect to $\mathbf{V}_{\mathbf{s}}$)	
Resistor Phase Angle, ϕ_{R} (measured, with respect to $\mathbf{V}_{\mathbf{s}}$)	
Does $\mathbf{V}_{\mathbf{C}}$ lead or lag $\mathbf{V}_{\mathbf{s}}$?	
Does $\mathbf{V}_{\mathbf{R}}$ lead or lag $\mathbf{V}_{\mathbf{s}}$?	

DATA SHEET, pg. 4/4	Name
Expt. \#10 AC Circuits/Phasors	Lab Partner

Table 10-9 RC Circuit for Equal Resistance and Reactance 10.0 Vpp, ? Hz sine wave. Nominal values: $R=2.0 \mathrm{k} \Omega, C=0.1 \mu \mathrm{~F}$

	Quantity and Unit
Calculated frequency $f=f_{o}$ for $R=\left\|X_{C}\right\|$	
Measured frequency f_{o}	
Source Voltage, $V_{S, r m s}$ at f_{o}	
Capacitor Voltage, $V_{C, r m s}$ at f_{o}	
Resistor Voltage, $V_{R, r m s}$ at f_{o}	
Ratio of Resistor Voltage to Source Voltage, $\frac{V_{R, r m s}}{V_{S, r m s}}$	
Square of Voltage Ratio = Power Ratio, $\left(\frac{V_{R, r m s}}{V_{S, r m s}}\right)^{2}$	

DATA SHEET, pg. 1/3	Name
Expt. \#11 Resonance	Lab Partner

Table 11-1 Resistor, Capacitor and Inductor Values;
Predicted Resonant and Half-Power Frequencies. Include units.

Element	Measured Value	
$3.0 \mathrm{k} \Omega$ resistor	$R=$	
33 mH Inductor	$\boldsymbol{R}_{L}=$	
	$L=$	
$0.1 \mu \mathrm{~F}$ Capacitor	$C=$	
Resonant frequency, calculated	$\omega_{0}=$	$f_{o}=$
Frequency at $V_{R}=V_{S} / \sqrt{2}$	$\omega_{1}=$	$f_{1}=$
	$\omega_{2}=$	$f_{2}=$

DATA SHEET, pg. 2/3
 Expt. \#11 Resonance

Lab
Partner

Table 11-2 Frequency and Voltage Measurements: RLC Circuit, 8.0 $\mathrm{V}_{\mathrm{p} \text { p }}$ sine wave.

\boldsymbol{f}	\boldsymbol{f}	$\boldsymbol{V}_{\boldsymbol{R}, r m s}$	$\boldsymbol{V}_{L, r m s}$	$\boldsymbol{V}_{\text {Crms }}$
nominal	measured	measured	measured	measured
Units: $\mathbf{H z}$	$\mathbf{H z}$	\mathbf{V}	\mathbf{V}	\mathbf{V}
100				
200				
300				
500				
1.0 k				
2.0 k				
3.0 k				
5.0 k				
10 k				
20 k				
30 k				
$50 \mathrm{k} *$				
$f_{o}=$				

* A frequency of 50 kHz may be pushing the limits of the oscilloscope, so readings at this level may not be valid.

Note: DMM measurements are $V_{r m s}$ values, not amplitudes V_{p}.

Name

Lab
Partner

Table 11-3 Half-Power Measurements: RLC Circuit, $8.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ sine wave
Nominal source signal amplitude $\quad V_{S}=4.0 \mathrm{~V}$.
Predicted amplitude of resistor voltage at half-power frequency (Step 4):
$V_{R, \text { half-power }}=0.707 V_{R, \text { max }}=0.707 V_{S}=$ \qquad V

	\boldsymbol{f}	$\boldsymbol{V}_{\boldsymbol{R}, \text { rrms, half-power }}^{(\text {r.m.s. })}$	$\boldsymbol{V}_{\boldsymbol{R}, \text {,alf-power }}$ (amplitude)	\% Difference of $\boldsymbol{V}_{\boldsymbol{R}}$ w.r.t. predicted
Units	Hz	V	V	$\%$
f_{1}				
f_{2}				

Note: DMM measurements are $V_{r m s}$ values, not amplitudes V_{p}.
Convert measured r.m.s. values into amplitude values $\left(V_{R}=\sqrt{2} V_{R, r m s}\right)$

Table 11-4 Measured Peak Voltages and Phases: RC Circuit, $\mathbf{8 . 0}$ Vpp, $\mathbf{2 0 0 0 ~ H z ~ s i n e ~ w a v e . ~}$ Assume voltage source has zero phase: $\mathbf{V}_{\mathbf{S}}=V_{S} \angle 0^{\circ}$.

Measured peak-to-peak source signal: $V_{p p}=$ \qquad V, $f=$ \qquad Hz.

Predicted peak resistor voltage for given frequency: $V_{R, p}=$ \qquad V.

Component	Peak Voltage $V_{p}(\mathbf{V})$	Phase Angle $\phi($ degrees $)$	Does the Component Lead or Lag the Source?
Source		0.0°	
Resistor			
Inductor			
Capacitor			

This page intentionally left blank.

[^0]: Step 21
 Instructor Initial:

