Solving a 3x3 System of Equations using Cramer's Rule

Consider the system of equations:

$$
\begin{aligned}
& 3 x+2 y+z= 4 \\
& 2 x-3 y+3 z= 6 \\
& x+4 y-z=-5
\end{aligned}
$$

In matrix form, the system can be written:

$$
\left[\begin{array}{ccc}
3 & 2 & 1 \\
2 & -3 & 3 \\
1 & 4 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4 \\
6 \\
-5
\end{array}\right]
$$

In short: $\underline{\mathbf{A}} \mathbf{x}=\mathbf{b}$, where $\underline{\mathbf{A}}$ is the coefficient matrix, \mathbf{x} is the column vector of variables, and \mathbf{b} is the column vector of constants.

Cramer's Rule 3x3

Step. 1 Calculate the Determinant Δ of the Coefficient Matrix

This method of taking the determinant works only for a 3×3 matrix system (not for a 4×4 and above).

$$
\begin{aligned}
\Delta= & \operatorname{det}\left[\begin{array}{ccc}
3 & 2 & 1 \\
2 & -3 & 3 \\
1 & 4 & -1
\end{array}\right]=\left|\begin{array}{ccc}
3 & 2 & 1 \\
2 & -3 & 3 \\
1 & 4 & -1
\end{array}\right| \\
& =+(3)(-3)(-1)+(2)(3)(1)+(1)(2)(4)-(1)(-3)(1)-(4)(3)(3)-(-1)(2)(2) \\
& =+(9)+(6)+(8)-(-3)-(36)-(-4) \\
& =-6
\end{aligned}
$$

Note that the matrix is written in square brackets []; its determinant is written within "absolute value" lines | | .

The determinant for a 3×3 (and only for a 3×3) can be calculated as follows.
a. Write the 3 x 3 in its determinant form (within | |).
b. Write the first two columns to the right of the 3 x 3 ; this makes the process easier (but is not necessarily needed once you have practice).

$$
\left.\left|\begin{array}{ccc}
3 & 2 & 1 \\
2 & -3 & 3 \\
1 & 4 & -1
\end{array}\right| \begin{array}{cc}
3 & 2 \\
2 & -3 \\
1 & 4
\end{array} \right\rvert\,
$$

Note: the Engr 170 textbook adds the first two rows below the original 3x3; this set-up also works.
c. To calculate the determinant:

- Add the products of the 3 sets of 3 diagonal terms going down-right, and
- Subtract the products of the 3 sets of 3 diagonals going up-right.

$$
\begin{aligned}
& =+(3)(-3)(-1)+(2)(3)(1)+(1)(2)(4)-(1)(-3)(1)-(4)(3)(3)-(-1)(2)(2) \\
& =+(9)+(6)+(8)-(-3)-(36)-(-4) \\
& =-6
\end{aligned}
$$

If you do not write the first two columns to the right of the $3 x 3$, when multiplying, just wrap around to the appropriate missing terms, e.g., the second and third positive products:

Step 2 Determinants $\Delta_{1}, \Delta_{2}, \ldots$

Replace the first column of the coefficient matrix with the constant vector, and take the determinant of the matrix thus formed:

$$
\begin{aligned}
\Delta_{1} & =\operatorname{det}\left[\begin{array}{ccc}
4 & 2 & 1 \\
6 & -3 & 3 \\
-5 & 4 & -1
\end{array}\right]=\left|\begin{array}{ccc}
4 & 2 & 1 \\
6 & -3 & 3 \\
-5 & 4 & -1
\end{array}\right| \\
& =+(4)(-3)(-1)+(2)(3)(-5)+(1)(6)(4)-(-5)(-3)(1)-(4)(3)(4)-(-1)(6)(2) \\
& =+(12)+(-30)+(24)-(15)-(48)-(-12) \\
& =-45
\end{aligned}
$$

Repeat by replacing the second column of the coefficient matrix, and then the third:

$$
\Delta_{2}=\left|\begin{array}{ccc}
3 & 4 & 1 \\
2 & 5 & 3 \\
1 & -5 & -1
\end{array}\right|=31 \quad \text { and } \quad \Delta_{3}=\left|\begin{array}{ccc}
3 & 2 & 4 \\
2 & -3 & 6 \\
1 & 4 & -5
\end{array}\right|=49
$$

Step 3 Solving each Variable

The first variable is solved by dividing Δ_{1} by Δ :

$$
x=\frac{\Delta_{1}}{\Delta}=\frac{-45}{-6}=7.50
$$

Likewise:

$$
y=\frac{\Delta_{2}}{\Delta}=\frac{31}{-6}=-5.17 \quad \text { and } \quad z=\frac{\Delta_{3}}{\Delta}=\frac{49}{-6}=-8.17
$$

Alternate Method of Taking the Determinant of a 3x3 Matrix

An alternate method of taking the determinant of a 3×3 is to to break down the 3×3 matrix into three 2×2 matrices, as follows.

First, set up this matrix on the paper (or in your mind):

$$
\left[\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right]
$$

" + " signs are in positions where the Row + Column is even $(1,1),(1,3),(2,2),(3,3)$, etc.
"-" signs are in positions where the Row + Column is odd (1,2), (2,3), etc.
Now, consider the elements in Row 1 of the $3 x 3$. These will become coefficients of smaller 2×2 matrices as follows:

$$
\Delta=\left|\begin{array}{ccc}
\mathbf{3} & \mathbf{2} & \mathbf{1} \\
2 & -3 & 3 \\
1 & 4 & -1
\end{array}\right|=+(3)\left|\begin{array}{cc}
-3 & 3 \\
4 & -1
\end{array}\right|-(2)\left|\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right|+(1)\left|\begin{array}{cc}
2 & -3 \\
1 & 4
\end{array}\right|
$$

The determinant of each 2 x 2 is found by adding the product of the downward diagonal terms and subtracting the product of the upward diagonal terms:

$$
\begin{aligned}
& =+(3)[(-3)(-1)-(4)(3)]-(2)[(-2)-(3)]+(1)[(8)-(-3)] \\
& =-27+10+11=-6
\end{aligned}
$$

Here is how the three 2 x 2 's and their coefficients were set up.

- Take the element in Row 1, Column $1(1,1)$: " 3 "; it will be multiplied by positive 1 , the sign in $(1,1)$ of the "+/-" matrix. Cover all elements in Row 1 and all elements in Column 1, which leaves four elements uncovered ... a 2 x 2 matrix. The " $+(3)$ " is multiplied by this 2 x 2 matrix.

- Take the element in (1,2): " 2 "; it will be multiplied by negative 1 , the sign in $(1,2)$ of the " $+/-$ " matrix. Cover all elements in Row 1 and all elements in Column 2, which leaves four elements uncovered ... a 2×2 matrix. The "-(2)" is multiplied by this 2 x 2 matrix.

$$
\left|\begin{array}{ccc}
1 & 4 & 1 \\
2 & -3 & 3 \\
1 & 4 & -1
\end{array}\right| \longrightarrow-(2)\left|\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right|
$$

- Take the element in (1,3): " 1 "; a positive will be placed in front, the sign in $(1,3)$ of the "+/-" matrix. Cover all elements in Row 1 and all elements in Column 3, which leaves four elements uncovered ... a 2×2 matrix. The " $+(1)$ " is multiplied by this 2×2 matrix.

$$
\left|\begin{array}{ccc}
3 & 2 & 1 \\
2 & -3 & 3 \\
1 & 4 & -1
\end{array}\right| \longrightarrow+(1)\left|\begin{array}{cc}
2 & -3 \\
1 & 4
\end{array}\right|
$$

You can take any row or column you wish. Consider Column 2:

- Take the element in (1,2): " 2 "; a negative will be placed in front, the sign in $(1,2)$ of the "+/-" matrix. Cover all elements in Row 1 and all elements in Column 2, which leaves four elements uncovered ... a 2×2 matrix. The "-(2)" is multiplied by this 2×2 matrix.
$\left|\begin{array}{ccc}3 & 1 & 1 \\ 2 & -3 & 3 \\ 1 & 1 & -1\end{array}\right|$
- Take the element in $(2,2)$: " -3 "; a positive will be placed in front, the sign in $(2,2)$ of the " $+/-$ " matrix. Cover all elements in Row 2 and all elements in Column 2, which leaves four elements uncovered ... a 2×2 matrix. The " $+(-3)$ " is multiplied by this 2×2 matrix.

- Take the element in $(3,2)$: " 1 "; a negative will be placed in front, the sign in $(3,2)$ of the "+/-" matrix. Cover all elements in Row 3 and all elements in Column 2, which leaves four elements uncovered ... a 2×2 matrix. The "-(4)" is multiplied by this 2×2 matrix.

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
3 & \mathbf{2} & 1 \\
2 & -\mathbf{3} & 3 \\
1 & \mathbf{4} & -1
\end{array}\right|=-(2)\left|\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right|+(-3)\left|\begin{array}{cc}
3 & 1 \\
1 & -1
\end{array}\right|-(4)\left|\begin{array}{ll}
3 & 1 \\
2 & 3
\end{array}\right| \\
& =-(2)[(-2)-(3)]+(-3)[(-3)-(1)]-(4)[(9)-(2)] \\
& =10+12-28=-6
\end{aligned}
$$

This method can be used to reduce higher-order matrices. For example, the determinant of a [6x6] matrix is found by:

- reducing the [6x6] to six [5x5]'s,
- reducing each [5x5] to five [4×4]'s ... 30 total matrices
- reducing each $[4 \times 4]$ to four [3 x 3]'s ... 120 total matrices
- reducing each [3 x 3] to three [2 x 2]'s ... 360 total matrices

Take the determinant of 360 [2×2 's] and multiply by appropriate products, making sure the sign works.

Or, you could just use MATLAB: define the 6×6 matrix, call it A, and then type det (A).

