Engr. 161 Final Exam Equation/Procedure Sheet

Ch. 2 Atomic Structure and Bonding

Net, Attractive, Repulsive Energies between two ions:

$$E_N = E_A + E_R = -\frac{A}{r} + \frac{B}{r^n}; \ n \sim 8$$
$$A = \frac{1}{4\pi\varepsilon_o} (q_1)(q_2); \ q = \text{magnitude of net charge}$$

Force between two ions

$$F_N = F_A + F_R = +\frac{A}{r^2} - \frac{B}{r^{n+1}}$$

% ionic character = $\left\{1 - e^{-(1/4)(X_1 - X_2)^2}\right\} \times 100\%$
 $X =$ electronegativity

Chapt 3 Structure of Crystalline Solids

	Lattice Parameter	APF
FCC:	$a = 2\sqrt{2}R$	0.74
BCC:	$a = \frac{4}{\sqrt{3}}R$	0.68
НСР	a = 2R; c = 1.633a	0.74

$$APF = \frac{\text{volume of atoms}}{\text{volume of unit cell}} = \frac{nV_{sph}}{V_{cell}}$$

Density: $\rho = \frac{nA}{V_{cell}N_A}$

$$LD = \frac{\text{number of atoms centered on direction vector}}{\text{length of direction vector}}$$
$$PD = \frac{\text{number of atoms centered on a plane}}{\text{number of atoms centered on a plane}}$$

area of plane

Points: coordinates in terms of fractional distances of lattice parameters

Naming Direction Vectors

- 1. Move tail to origin
- 2. Write point where direction leaves unit cell
- 3. Multiply by LCD to get integers
- 4. Enclose in square brackets $[h \ k \ l]$

Naming Planes

- 1. Move plane off origin
- 2. Write intercepts of plane with x-, y-, and z-axes
- 3. Flip intercepts
- 4. Multiply by LCD to get integers
- 5. Enclose in parenthesis (h k l)

Families of directions: same orientation and LD; < > **Families** of planes: same orientation, and packing density; { }

Crystal Systems (systems that have only right-angles):

Cubic (3 sides equal) Tetragonal (2 sides equal) Orthogonal (no sides equal)

Stacking: FCC: ABCABCABC ...; HCP: ABABABAB...

Chapt 12 Structure of Ceramics

Determined by ratio of ionic radii r_c/r_a ; electric charge.

Ch 4. Imperfections

Vacancies. Solid Solutions: substitutional, interstitial Dislocations. Grain Boundaries, Interphase Bnds, Free Surfaces. Voids, Inclusions, other Phases.

Number of vacancies:	$N_{v} = N \exp\left(\frac{-Q_{v}}{kT}\right)$
Number of atomic sites per unit volume:	$N = \frac{(N_A)\rho}{A}$
Composition, wt% of Element 1	$C_1 = \frac{m_1}{m_1 + m_2} \times 100 \text{ wt\%}$
Composition, at%	$C_1' = \frac{n_1}{n_1 + n_2} \times 100 \text{ at\%}$
Conversion wt% to at%	$C_1' = \frac{C_1 A_2}{C_1 A_2 + C_2 A_1} \times 100 \text{ at\%}$
Conversion at% to wt%	$C_1 = \frac{C_1' A_1}{C_1' A_1 + C_2' A_2} \times 100 \text{ wt\%}$
Concentration: $\rho[g/cm^3]$ $C''[kg/m^3]$	$C_1'' = \frac{C_1}{\frac{C_1}{\rho_1} + \frac{C_2}{\rho_2}} \times 10^3$
Average Density, two- element solid- solution:	$\rho_{\rm ave} = \frac{100}{\frac{C_1}{\rho_1} + \frac{C_2}{\rho_2}}$

Grain Size

<u>ASTM Method</u>: $N = 2^{n-1} = 2^{G-1}$

N = # of grains per in.² at 100×, n = G = grain-size number

Intersection Method (on photomicrograph magnified *M* times)

- draw ~7+ lines of same length *L* in <u>random</u> directions; the lines should be as long as possible.
- determine average number of grains per line: g; <u>OR</u> the average number grain boundaries intersected per line: p.
- divide line length by average number of grains per line (or intersections per line) to give the grain size <u>as seen in</u> <u>picture</u>: *l* = *L/g* (or *d_i* = *L/p*)
- divide by mag. *M* to give the *grain diameter*: D = l/M, or the *mean intercept length*: $\overline{\ell} = d_i/M$

Alternate: Take the total length of the lines L_T (e.g., $L_T=7L$) divide by the total grains *R* covered by the lines, or the number G.B. intersections, and divide again by the magnification *M*: $D = \frac{L_T}{\ell} = \frac{L_T}{\ell}$

$$\frac{L_T}{RM} \qquad \qquad \ell = \frac{L_T}{PM}$$

Chapt 5 Diffusion

Diffusion Flux	$J = \frac{M}{At}$
Fick's First Law: $C = \text{concentration [kg/m^3]}$	$J = -D\frac{\Delta C}{\Delta x}$
Diffusion Coefficient [m ² /s]	$D = D_o \exp\left(\frac{-Q_d}{RT}\right)$

Ch. 6 Mechanical Properties of Metals

Stress in Axial Bar:	$\sigma = \frac{F}{A_o}$
Strain:	$\varepsilon = \frac{l - l_o}{l_o} = \frac{\Delta l}{l_o}$
Hooke's Law:	$\sigma = E\varepsilon$
Young's Modulus:	E
Proportional Limit:	$\sigma_p = P$
Yield Strength (0.2% offset):	σ_y
Tensile Strength:	TS (UTS)
Resilience/Modulus of R.	$U_R = \frac{1\sigma_y^2}{2E}$
Toughness:	Area under σ – ε curve

Poisson's Ratio:

$$v = -\frac{\varepsilon_x}{\varepsilon_z} = -\frac{\varepsilon_y}{\varepsilon_z} = -\frac{\varepsilon_T}{\varepsilon_{direct}} = -\frac{transverse\ strain}{direct\ strain}$$

Failure Strain (Ductility):

$$\% EL = \varepsilon_f = \left(\frac{l_f - l_o}{l_o}\right) \times 100\%; \quad l_f = \text{final length}$$

Reduction of Area (Ductility):

$$\% RA = \left(\frac{A_o - A_f}{A_o}\right) \times 100\%;$$
 A_f = area at failure (neck)

Working Stress (Allowable Stress) σ_w ; **Factor of Safety**:

 $\sigma_w = \frac{\sigma_y}{N} = \frac{\sigma_y}{FS} \quad \dots \quad FS = \frac{\sigma_y}{\sigma_w}$

Ch. 7 Dislocations and Strengthening Mechanisms

Slip System: Slip Plane and Slip Direction Shear Stress τ causes dislocations to move.

Hall-Petch Equation:

$$\sigma_y = \sigma_o + \frac{k}{d^{1/2}}$$

Percent Cold Work:

$$\% CW = \left(\frac{A_o - A_d}{A_o}\right) \times 100\%;$$

 $A_d =$ cross-sec. area at deformed length

Grain Growth:

 $d^n - d^n_o = Kt$

Constants

Avogadro's Number

 $N_{\rm A} = 6.022 \times 10^{23}$ atoms/mole, or: $N_{\rm A} = 6.022 \times 10^{23}$ molecules/mole

Boltzman's Constant:

 $k = 8.62 \times 10^{-5} \text{ eV/atom-K}$ = 1.38 ×10⁻²³ J/atom-K

Gas Constant:

R = 8.31 J/mol-K

Chapt 8 Failure

Fracture (Brittle Fracture/Fast Fracture)

Half Crack Length:a (center crack 2a, edge crack a)Stress Intensity Factor:

$$K_I = Y\sigma\sqrt{\pi a}$$

 $Y =$ geometric factor: Center crack: 1.0

Edge crack: 1.12

Critical Stress Intensity Factor or Fracture Toughness

 K_{lc} - material property

Critical Stress (to cause fracture at crack size *a*)

$$\sigma_c = \frac{K_{Ic}}{Y\sqrt{\pi a}}$$

Critical Crack Size (to cause fracture at applied stress σ)

$$a_c = \frac{1}{\pi} \left(\frac{K_{Ic}}{Y\sigma} \right)^2$$

Maximum Crack Size to ensure yielding and not fracture

$$a_c = \frac{1}{\pi} \left(\frac{K_{Ic}}{Y \sigma_y} \right)^2$$

Fatigue

Mean Stress	$\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2}$
Stress Amplitude	$\sigma_a = \frac{\sigma_{max} - \sigma_{min}}{2}$
R-ratio	$R = \frac{\sigma_{min}}{\sigma_{max}}$

Creep

Minimum Temperature for Creep $\sim 0.4T_m$ Creep Rate

$$\dot{\varepsilon}_s = K_1 \sigma^n$$
$$\dot{\varepsilon}_s = K_2 \sigma^n \exp\left(\frac{-Q_c}{RT}\right)$$

Engr. 161 Final Exam Equation/Procedure Sheet

Chapt 9 Phase Diagram

PHASE DIAGRAMS. Knowing system composition C_o , and Temperature T, you can find:

- 1. Phases present
- 2. Composition of each phase (end of tie-line)
- 3. Weight fraction (mass fraction) *W*, of each phase.

Draw microstructure of system when cooled from liquid.

Composition C ₁ , of Element 1 (Elem1) in system, wt%[Elem1]	$C_1 = \frac{m_1}{m_1 + m_2} \times 100 \text{ wt\%[Elem1]}$
Mass Fraction (Weight	Lever Rule
Fraction) of Phase α in α - β region (α on left)	$W_{\alpha} = \frac{C_{\beta} - C_{o}}{C_{\beta} - C_{\alpha}}$
Mass Fraction (Weight	Lever Rule
Fraction) of Phase β in α - β region (α on	$W_{\beta} = \frac{C_o - C_{\alpha}}{C_o - C_{\alpha}}$
left)	σβσα

Eutectic:	$L \rightarrow \alpha + \beta$
Eutectoid:	$\gamma \rightarrow \alpha + \beta$
Hypoeutectic:	System with composition below eutectic composition C_{E} .
Hypereutectic:	System with composition above eutectic composition C_{E} .

Chapt 17 Corrosion

Corrosion: Chemical Attack

Oxidation: metal electrode loses electrons ... goes into solution; can bond with oxygen (oxidize). The *anode*.

Reduction: metal ion gains electrons to become solid. The *cathode*.

Standard EMF Series

EMF Series rates metals from most chemically inert (most cathodic) to most active (most anodic) by measuring the voltage difference between a metal anode in 1 molar solution of its own ion with respect to (w.r.t.) platinum anode in 1 molar solution of H+ (standard hydrogen electrode). The electrodes are electrically connected to each other, and the solutions are separated by a membrane that only lets electric charge pass through.

The more positive V^o (w.r.t. platinum electrode), the less likely that metal is to corrode. The less positive V^o , the more likely to corrode.

Eletrochemical Cell

Connecting two metals in an electrochemical cell (electrode of metal in its own solution, connected electrically to another electrode metal in its own solution), gives a voltage difference:

$$\Delta V^o = V_2^o - V_1^o$$

If $\Delta V^o > 0$, Metal 1 corrodes; if $\Delta V^o < 0$, Metal 2 corrodes.

The metal that corrodes (loses material is the anode. The metal that does not corroded is the cathode.

Galvanic Series

Galvanic Series rates metals resistance to corrosion in seawater. The higher on the series, the more resistant to corrosion.

Corrosion: eight types

Remember your two favorite types of corrosion and be able to describe them.

Corrosion Prevention

How do you prevent/impede corrosion?

Chapt 18 Electrical Properties

Material properties:

Resistivity: $\rho \ [\Omega \cdot m]$ Conductivity: $\sigma = \rho^{-1} \ [\Omega \cdot m]^{-1}$

Ohm's Law	V = IR
Resistance of wire	$\rho = \rho l$
Length <i>l</i> , cross-sect. A	$R = \frac{1}{A}$

Semi-Conductors

Based on Column-IV elements (Si, Ge). Doped to increased conductivity.

Conductors of electricity electrons (-) and holes (+)

- **n-type:** dope with an element with more valence elections (negative charge carrier)
- **p-type**: dope with an element with less valence elections (positive charge carrier)

USEFUL INFORMATION

Constants

Avogadro's Number

 $N_A = 6.022 \times 10^{23}$ molecules/mole

Boltzman's Constant:

 $k = 8.62 \times 10^{-5}$ eV/atom-K = 1.38×10^{-23} J/atom-K

Ideal Gas Constant:

R = 8.31 J/mol-K

The Three Moe s of Fracture

Moe I

Moe II

The Standard emf Series

Further down the chart, electrodes become increasingly active.

		Standard
Electrode Reaction		Potential
		$V^0(V)$
$Au^{3+} + 3e^- \rightarrow$	Au	+1.420
$O_2 + 4H^+ + 4e^- \rightarrow$	$2H_2O$	+1.229
Pt^{2+} + $2\mathrm{e}^ \rightarrow$	Pt	+1.20
$\mathrm{Ag^{+}}$ + $\mathrm{e^{-}}$ \rightarrow	Ag	+0.800
${ m Fe^{3+}}$ + ${ m 3e^-}$ \rightarrow	Fe	+0.771
$O_2 + 2H_2O + 4e^- \rightarrow$	4(OH·)	+0.401
Cu^{2+} + $2\mathrm{e}^ \rightarrow$	Cu	+0.340
$2\mathrm{H^{+}}$ + $2\mathrm{e^{-}}$ \rightarrow	H_2	+0.000
$\mathrm{Pb^{2+}}$ + $\mathrm{2e^{-}}$ \rightarrow	Pb	-0.126
$Sn^{2+} + 2e^{-} \rightarrow$	Sn	-0.136
Ni ²⁺ + 2e ⁻ \rightarrow	Ni	-0.250
Co^{2+} + $2\mathrm{e}^- \rightarrow$	Co	-0.277
Cd^{2+} + $2\mathrm{e}^ \rightarrow$	Cd	-0.403
${ m Fe^{2+}}$ + $2{ m e^-}$ \rightarrow	Fe	-0.440
$Cr^{3+} + 3e^{-} \rightarrow$	Cr	-0.744
${\rm Zn^{2+}}$ + $2{\rm e^-}$ \rightarrow	Zn	-0.763
Al^{3+} + $\mathrm{3e}^- \rightarrow$	Al	-1.662
${ m Mg^{2+}}$ + $2{ m e^-}$ $ ightarrow$	Mg	-2.363
Na ⁺ + e ⁻ \rightarrow	Na	-2.714
${ m K^{+}}$ + ${ m e^{-}}$ $ ightarrow$	Κ	-2.924

The Galvanic Series

	Platinum
	Gold
	Graphite
↑	Titanium
 T	Silver
Increasingly	Stainless Steel (passive)
Inert	Nickel (Passive)
	Copper-Nickel alloys
	Bronzes (Cu-Sn)
	Copper
	Brasses (Cu-Zn)
	Nickel (active)
	Tin
	Lead
	Stainless Steel (active)
т • 1	Cast Iron
Increasingly	Iron and Steel
Active	Aluminum Alloys
\downarrow	Cadmium
	Commercially pure Aluminum
	Zinc
	Magnesium Alloys

					-			a n l a				•					
1A												http://che	<u>emistry.a</u>	bout.con			8A
-												©2010 T	odd Helr	nenstine			2
т												About CI	hemistry				He
1.00794 Hvdrogen	۶A											30	44	50	64	ΔT	4.002602 Helium
3	4											5	9	710	ŝ	6	10
:	Be											ш	ပ	z	0	ш	Ne
6.941	9.012182											10.811	12.0107	14.0067	15.9994	18.9984032	20.1797
Lithium	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
11	12											13	14	15	16	17	18
Na	Mg											₹	Si	₽.	ა	ច	Ą
22.989769	24.3050			Ę		(1					C C	26.9815386	28.0855	30.973762	32.065	35.453	39.948
Sodium N		35 21	4B 23	20 27	90 77	/B 25	ЗR	- 86 -	ac ac	20	7B 30	Aluminum 31	31Icon	Phosphorus 33	Sultur 2.4	Chlorine 35	argon 36
		- (V (3 1	C7	⁺ (C7	° L	7 C	07	67 (- (^т с	3 6	
X	Ca	VC VC		>	ניינ	MN 1				Cu 	V V	<u>و</u> ع ۳	e S	AS	S S S S S S S S S S S S S S S S S S S	בי מיניג	
39.0983 Potassium	40.078 Calcium	Scandium	47.867 Titanium	Vanadium	51.9961 Chromium	54.938045 Manganese	645.66 Iron	Cobalt	Dickel	63.546 Conner	Zinc	69.723 Gallium	72.64 Germanium	/4.92160 Arsenic	78.96 Selenium	79.904 Bromine	83.798 Krvnton
37	38	39	40	41	42	43	4	45	46	47	48	49	50	51	52	53	54
Rb	Sr	≻	Zr	qN	Мо	ЦС	Ru	Rh	Pd	Ag	Сd	<u>_</u>	Sn	Sb	Te	_	Xe
85.4678	87.62	88.90585	91.224	92.90638	95.96	[86]	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	126.90447	131.293
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Lin	Antimony	Tellurium	lodine	Xenon
55	20	57-71	72	73	74	75	76	12	78	62	80	<u>8</u>	82	83	8 I	85	86
cs	Ba		Ť	Та	≥	Re	SO	<u> </u>	Ŧ	Au	ВН	F	Ър	m	Ро	Ą	Rn
132.9054519 Cooirine	137.327 Borium	o the original sectors	178.49 Underium	180.94788 Tontolum	183.84 Tungoton	186.207 Phonium	190.23 Demi:	192.217 Iridium	195.084	196.966569	200.59	204.3833 Thollium	207.2	208.98040 Biomith	[209] Polonium	[210] Actotico	[222] Podon
87	88	RQ-103	104	105	106 106	107	108	100	110	111	112	113	114	115	116	117	118
5 L	ŝ	2	ă	2	30	2	, T	M +	č	20		•					
[223]	[226]		[267]	[268]	[271]	[272]	[270]	[276]	[281]	[280]	[285]	[284]	[289]	[288]	[293]	[294]	[294]
Francium	Radium	Actinides	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Ununtrium	Ununquadium	Ununpentium	Ununhexium	Ununseptium	Ununoctium
			£7	ξQ	ξÛ	θŪ	61	63	63	БЛ	65	99 99	67	68	BO	٥Z	74
_	vino dta a	004	5	ع د د			5 6	3 0	3	ין ד ל	3 F	2		3	3 6	2 \$	
	annan	ŝ		ני גיין ני						ן פַר		נ ני ג					
			Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
			89	06	91	92	93	94	95	96	67	98	66	100	101	102	103
A	ctinides		Ac	Тh	Pa	∍	dN	Pu	Am	с С	凝	ູດ	Es	E	Md	0N N	Ļ
			[227]	232.03806	231.03588	238.02891	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]
			Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

Periodic Table of the Flements

Actinides

Electronegativity

nts
č
U U
ш
e
÷
4
0
e
9
ש
<u>.</u>
Q
<u>0</u>
5
Pe

1A							Ele	ctrone	gativity			http://che	mistry.a	bout.com			8A
-)		0	©2010 To	odd Helr	nenstine			2
I												About Ch	lemistry				He
2.20	2A										'	3A	4A	5A	6A	٦A	no data
e	4											5	9	7	œ	6	10
:	Be			1.0	1.3 1.	6 1. <mark>9</mark>	2. 2 2.	5 2.8	3. 1			ш	ပ	z	0	u.	Ne
0.98	1.57		•									2.04	2.55	3.04	3.44	3.98	no data
11	12											13	14	15	16	17	18
Na	Mg											₹	Si	٩	ი	ប	Ą
0.93	1.31	3B	4B	5B	6B	7B		— 8B —	ſ	1B	2B	1.61	1.90	2.19	2.58	3.16	no data
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
×	Ca	Sc	F	>	ບັ	ЧN	Е	ပိ	ïŻ	Cu	Zn	Ga	Ge	As	Se	'n	Kr
0.82	1.00	1.36	1.54	1.63	1.66	1.55	1.83	1.88	1.91	1.90	1.65	1.81	2.01	2.18	2.55	2.96	3.00
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	≻	Zr	qN	Mo	ЦС	Ru	Rh	Pd	Ag	Cd	<u>_</u>	Sn	Sb	Te	-	Xe
0.82	0.95	1.22	1.33	1.6	2.16	1.9	2.2	2.28	2.20	1.93	1.69	1.78	1.96	2.05	2.1	2.66	2.6
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		μĘ	Ta	3	Re	Os	<u>-</u>	đ	Au	Hg	F	Pb	<u>B</u>	Ро	At	Rn
0.79	0.89	Lanthanides	1.3	1.5	2.36	1.9	2.2	2.20	2.28	2.54	2.00	1.62	2.33	2.02	2.0	2.2	no data
87	88	89-103															
L L	Ra		*** EI(ements :	• 104 ex	ist only f	for very	short ha	alf-lifes a	ind the c	lata is u	nknown.	***				
0.7	0.89	Actinides															

ľ														
58 59	29		09	61	62	63	64	65	99	67	68	69	20	71
Ce	Ъ		Nd	Рп	Sm	Eu	Bd	Tb	Ŋ	Р	ŗ	Tm	٩۲	Lu
1.12 1.13	1.13		1.14	1.13	1.17	1.2	1.2	1.2	1.22	1.23	1.24	1.25	1.1	1.27
90 91	91		92	93	94	95	96	97	98	66	100	101	102	103
Th Pa	Ра	_	∍	dN	Pu	Am	Cm	Ŗ	ç	Es	EB	Md	No	Ļ
1.3 1.5	1.5		1.38	1.36	1.28	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	no data