Ch. 2 Atomic Structure and Bonding

Net, Attractive, Repulsive Energies between two ions:

$$
\begin{aligned}
& E_{N}=E_{A}+E_{R}=-\frac{A}{r}+\frac{B}{r^{n}} ; n \sim 8 \\
& A=\frac{1}{4 \pi \varepsilon_{o}}\left(q_{1}\right)\left(q_{2}\right) ; \quad q=\text { magnitude of net charge }
\end{aligned}
$$

Force between two ions

$$
F_{N}=F_{A}+F_{R}=+\frac{A}{r^{2}}-\frac{B}{r^{n+1}}
$$

$\%$ ionic character $=\left\{1-e^{-(1 / 4)\left(X_{1}-X_{2}\right)^{2}}\right\} \times 100 \%$

$$
X=\text { electronegativity }
$$

Chapt 3 Structure of Crystalline Solids

	Lattice Parameter	APF
FCC:	$a=2 \sqrt{2} R$	0.74
BCC:	$a=\frac{4}{\sqrt{3}} R$	0.68
HCP	$a=2 R ; c=1.633 a$	0.74

$A P F=\frac{\text { volume of atoms }}{\text { volume of unit cell }}=\frac{n V_{\text {sph }}}{V_{\text {cell }}}$
Density: $\quad \rho=\frac{n A}{V_{\text {cell }} N_{A}}$
$L D=\frac{\text { number of atoms centered on direction vector }}{\text { length of direction vector }}$
$P D=\frac{\text { number of atoms centered on a plane }}{\text { area of plane }}$
Points: coordinates in terms of fractional distances of lattice parameters

Naming Direction Vectors

1. Move tail to origin
2. Write point where direction leaves unit cell
3. Multiply by LCD to get integers
4. Enclose in square brackets $[\mathrm{hkl}]$

Naming Planes

1. Move plane off origin
2. Write intercepts of plane with x-, y-, and z-axes
3. Flip intercepts
4. Multiply by LCD to get integers
5. Enclose in parenthesis ($h \mathrm{kl}$)

Families of directions: same orientation and LD; < >
Families of planes: same orientation, and packing density; \{ \}
Crystal Systems (systems that have only right-angles):
Cubic (3 sides equal)
Tetragonal (2 sides equal)
Orthogonal (no sides equal)
Stacking: FCC: ABCABCABC...; HCP: ABABABAB...

Chapt 12 Structure of Ceramics

Determined by ratio of ionic radii r_{c} / r_{a}; electric charge.

Ch 4. Imperfections

Vacancies. Solid Solutions: substitutional, interstitial Dislocations. Grain Boundaries, Interphase Bnds, Free Surfaces. Voids, Inclusions, other Phases.

Number of vacancies:	$N_{v}=N \exp \left(\frac{-Q_{V}}{k T}\right)$
Number of atomic sites per unit volume:	$N=\frac{\left(N_{A}\right) \rho}{A}$
Composition, wt $\%$ of Element 1	$C_{1}=\frac{m_{1}}{m_{1}+m_{2}} \times 100 \mathrm{wt} \%$
Composition, at $\%$	$C_{1}^{\prime}=\frac{n_{1}}{n_{1}+n_{2}} \times 100$ at $\%$
Conversion wt $\%$ to at $\%$	$C_{1}^{\prime}=\frac{C_{1} A_{2}}{C_{1} A_{2}+C_{2} A_{1}} \times 100$ at $\%$
Conversion at $\%$ to wt $\%$	$C_{1}=\frac{C_{1}^{\prime} A_{1}}{C_{1}^{\prime} A_{1}+C_{2}^{\prime} A_{2}} \times 100 \mathrm{wt} \%$
Concentration: $\rho\left[\mathrm{g} / \mathrm{cm} \mathrm{m}^{3}\right]$ $C^{\prime \prime}\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	$C_{1}^{\prime \prime}=\frac{C_{1}}{\frac{C_{1}}{\rho_{1}}+\frac{C_{2}}{\rho_{2}}} \times 10^{3}$
Average Density, two- element solid- solution:	$\rho_{\text {ave }}=\frac{100}{\frac{C_{1}}{\rho_{1}}+\frac{C_{2}}{\rho_{2}}}$

Grain Size

ASTM Method: $N=2^{n-1}=2^{G-1}$
$N=\#$ of grains per in. ${ }^{2}$ at $100 \times, n=G=$ grain-size number
Intersection Method (on photomicrograph magnified M times)

- draw $\sim 7+$ lines of same length L in random directions; the lines should be as long as possible.
- determine average number of grains per line: g; OR the average number grain boundaries intersected per line: p.
- divide line length by average number of grains per line (or intersections per line) to give the grain size as seen in picture: $l=L / g\left(\right.$ or $\left.d_{i}=L / p\right)$
- divide by mag. M to give the grain diameter: $D=l / M$, or the mean intercept length: $\bar{\ell}=d_{i} / M$
Alternate: Take the total length of the lines $L_{T}\left(\right.$ e.g., $\left.L_{T}=7 L\right)$ divide by the total grains R covered by the lines, or the number G.B. intersections, and divide again by the magnification M :

$$
D=\frac{L_{T}}{R M} \quad \bar{\ell}=\frac{L_{T}}{P M}
$$

Chapt 5 Diffusion

Diffusion Flux $\quad J=\frac{M}{A t}$

Fick's First Law: $C=$ concentration $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	$J=-D \frac{\Delta C}{\Delta x}$
Diffusion Coefficient $\left[\mathrm{m}^{2} / \mathrm{s}\right]$	$D=D_{o} \exp \left(\frac{-Q_{d}}{R T}\right)$

Ch. 6 Mechanical Properties of Metals

Stress in Axial Bar:	$\sigma=\frac{F}{A_{o}}$
Strain:	$\varepsilon=\frac{l-l_{o}}{l_{o}}=\frac{\Delta l}{l_{o}}$
Hooke's Law:	$\sigma=E \varepsilon$
Young's Modulus:	E
Proportional Limit:	$\sigma_{p}=P$
Yield Strength $(0.2 \%$ offset):	σ_{y}
Tensile Strength:	$T S(U T S)$
Resilience/Modulus of R.	$U_{R}=\frac{1 \sigma_{y}^{2}}{2 E}$
Toughness:	Area under $\sigma-\varepsilon$ curve

Poisson's Ratio:

$$
v=-\frac{\varepsilon_{x}}{\varepsilon_{z}}=-\frac{\varepsilon_{y}}{\varepsilon_{z}}=-\frac{\varepsilon_{T}}{\varepsilon_{\text {direct }}}=-\frac{\text { transverse strain }}{\text { direct strain }}
$$

Failure Strain (Ductility):

$$
\% E L=\varepsilon_{f}=\left(\frac{l_{f}-l_{o}}{l_{o}}\right) \times 100 \% ; \quad l_{f}=\text { final length }
$$

Reduction of Area (Ductility):

$$
\% R A=\left(\frac{A_{o}-A_{f}}{A_{o}}\right) \times 100 \% ; \quad A_{f}=\text { area at failure (neck) }
$$

Working Stress (Allowable Stress) σ_{w}; Factor of Safety:

$$
\sigma_{w}=\frac{\sigma_{y}}{N}=\frac{\sigma_{y}}{F S} \quad \ldots . . F S=\frac{\sigma_{y}}{\sigma_{w}}
$$

Ch. 7 Dislocations and Strengthening Mechanisms

Slip System: Slip Plane and Slip Direction
Shear Stress τ causes dislocations to move.

Hall-Petch Equation:

$$
\sigma_{y}=\sigma_{o}+\frac{k}{d^{1 / 2}}
$$

Percent Cold Work:

$$
\% C W=\left(\frac{A_{o}-A_{d}}{A_{o}}\right) \times 100 \%
$$

$$
A_{d}=\text { cross-sec. area at deformed length }
$$

Grain Growth:

$$
d^{n}-d_{o}^{n}=K t
$$

Constants

Avogadro's Number
$N_{\text {A }}=6.022 \times 10^{23}$ atoms $/ \mathrm{mole}$, or:
$N_{\mathrm{A}}=6.022 \times 10^{23}$ molecules $/$ mole

Boltzman's Constant:

$$
\begin{aligned}
k & =8.62 \times 10^{-5} \mathrm{eV} / \text { atom }-\mathrm{K} \\
& =1.38 \times 10^{-23} \mathrm{~J} / \text { atom }-\mathrm{K}
\end{aligned}
$$

Chapt 8 Failure

Fracture (Brittle Fracture/Fast Fracture)

Half Crack Length: $\quad a$ (center crack $2 a$, edge crack a)
Stress Intensity Factor:

$$
\begin{aligned}
& K_{I}=Y \sigma \sqrt{\pi a} \\
& \quad Y=\text { geometric factor: } \quad \text { Center crack: } 1.0
\end{aligned}
$$

Edge crack: 1.12
Critical Stress Intensity Factor or Fracture Toughness

$$
K_{I C}-\text { material property }
$$

Critical Stress (to cause fracture at crack size a)

$$
\sigma_{c}=\frac{K_{I c}}{Y \sqrt{\pi a}}
$$

Critical Crack Size (to cause fracture at applied stress σ)

$$
a_{c}=\frac{1}{\pi}\left(\frac{K_{I c}}{Y \sigma}\right)^{2}
$$

Maximum Crack Size to ensure yielding and not fracture

$$
a_{c}=\frac{1}{\pi}\left(\frac{K_{I c}}{Y \sigma_{y}}\right)^{2}
$$

Fatigue

Mean Stress	$\sigma_{m}=\frac{\sigma_{\max }+\sigma_{\min }}{2}$
Stress Amplitude	$\sigma_{a}=\frac{\sigma_{\max }-\sigma_{\min }}{2}$
R-ratio	$R=\frac{\sigma_{\min }}{\sigma_{\max }}$

Creep

Minimum Temperature for Creep $\sim 0.4 T_{m}$
Creep Rate

$$
\begin{aligned}
& \dot{\varepsilon}_{s}=K_{1} \sigma^{n} \\
& \dot{\varepsilon}_{s}=K_{2} \sigma^{n} \exp \left(\frac{-Q_{c}}{R T}\right)
\end{aligned}
$$

Gas Constant:

$$
R=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}
$$

Chapt 9 Phase Diagram

PHASE DIAGRAMS. Knowing system composition C_{o}, and Temperature T, you can find:

1. Phases present
2. Composition of each phase (end of tie-line)
3. Weight fraction (mass fraction) W, of each phase.

Draw microstructure of system when cooled from liquid.

Composition C_{1}, of Element 1 (Elem1) in system, wt $\%$ [Elem1]	$C_{1}=\frac{m_{1}}{m_{1}+m_{2}} \times 100 \mathrm{wt} \%$ [Elem1]
Mass Fraction (Weight Fraction) of Phase α in $\alpha-\beta$ region (α on left)	Lever Rule
Mass Fraction (Weight Fraction) of Phase β in $\alpha-\beta$ region (α on left)	$W_{\alpha}=\frac{C_{\beta}-C_{o}}{C_{\beta}-C_{\alpha}}$

Mass Fraction (Weight Lever Rule Fraction) of Phase α in $\alpha-\beta$ region (α on

Lever Rule

$$
W_{\beta}=\frac{C_{o}-C_{\alpha}}{C_{\beta}-C_{\alpha}}
$$

$$
\begin{array}{ll}
\text { Eutectic: } & L \rightarrow \alpha+\beta \\
\text { Eutectoid: } & \gamma \rightarrow \alpha+\beta
\end{array}
$$

Hypoeutectic: System with composition below eutectic composition C_{E}.
Hypereutectic: System with composition above eutectic composition C_{E}.

Chapt 17 Corrosion

Corrosion: Chemical Attack

Oxidation: metal electrode loses electrons ... goes into solution; can bond with oxygen (oxidize). The anode.
Reduction: metal ion gains electrons to become solid. The cathode.

Standard EMF Series

EMF Series rates metals from most chemically inert (most cathodic) to most active (most anodic) by measuring the voltage difference between a metal anode in 1 molar solution of its own ion with respect to (w.r.t.) platinum anode in 1 molar solution of $\mathrm{H}+$ (standard hydrogen electrode). The electrodes are electrically connected to each other, and the solutions are separated by a membrane that only lets electric charge pass through.
The more positive V^{0} (w.r.t. platinum electrode), the less likely that metal is to corrode. The less positive V^{0}, the more likely to corrode.

Eletrochemical Cell

Connecting two metals in an electrochemical cell (electrode of metal in its own solution, connected electrically to another electrode metal in its own solution), gives a voltage difference:

$$
\Delta V^{o}=V_{2}^{o}-V_{1}^{o}
$$

If $\Delta V^{0}>0$, Metal 1 corrodes; if $\Delta V^{0}<0$, Metal 2 corrodes.
The metal that corrodes (loses material is the anode. The metal that does not corroded is the cathode.

Galvanic Series

Galvanic Series rates metals resistance to corrosion in seawater. The higher on the series, the more resistant to corrosion.

Corrosion: eight types

Remember your two favorite types of corrosion and be able to describe them.

Corrosion Prevention

How do you prevent/impede corrosion?

Chapt 18 Electrical Properties

Material properties:
Resistivity: $\quad \rho[\Omega \cdot \mathrm{m}]$
Conductivity: $\quad \sigma=\rho^{-1}[\Omega \cdot \mathrm{~m}]^{-1}$

Ohm's Law	$V=I R$
Resistance of wire Length l, cross-sect. A	$R=\frac{\rho l}{A}$

Semi-Conductors

Based on Column-IV elements (Si, Ge). Doped to increased conductivity.
Conductors of electricity electrons (-) and holes (+)
n-type: dope with an element with more valence elections (negative charge carrier)
p-type: dope with an element with less valence elections (positive charge carrier)

USEFUL INFORMATION

Constants

Avogadro's Number
$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$ molecules $/$ mole
Boltzman's Constant:

$$
\begin{aligned}
k & =8.62 \times 10^{-5} \quad \mathrm{eV} / \text { atom }-\mathrm{K} \\
& =1.38 \times 10^{-23} \mathrm{~J} / \text { atom }-\mathrm{K}
\end{aligned}
$$

Ideal Gas Constant:

$$
R=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}
$$

The Three Moe s of Fracture

Moe I

Moe II

Moe III

The Standard emf Series

Further down the chart, electrodes become increasingly active.

Electrode Reaction	Standard Potential $V^{0}(V)$
$\mathrm{Au}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}$	+1.420
$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	+1.229
$\mathrm{Pt}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pt}$	+1.20
$\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}$	+0.800
$\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}$	+0.771
$\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightarrow 4(\mathrm{OH})$	+0.401
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$	+0.340
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H} 2$	+0.000
$\mathrm{~Pb}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}$	-0.126
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}$	-0.136
$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}$	-0.250
$\mathrm{Co}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}$	-0.277
$\mathrm{Cd}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}$	-0.403
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}$	-0.440
$\mathrm{Cr}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}$	-0.744
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}$	-0.763
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}$	-1.662
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}$	-2.363
$\mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na}$	-2.714
$\mathrm{~K}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{K}$	-2.924

The Galvanic Series

	Platinum
	Gold
	Graphite
	Titanium
	Silver
Inert	Stainless Steel (passive)
	Nickel (Passive)
	Copper-Nickel alloys
	Bronzes (Cu-Sn)
	Copper
	Brasses (Cu-Zn)
	Nickel (active)
	Tin
	Lead
	Stainless Steel (active)
Increasingly	Cast Iron
Active	Iron and Steel
\downarrow	Aluminum Alloys
	Cadmium
	Commercially pure Aluminum
	Zinc
	Magnesium Alloys

Periodic Table of the Elements

1A												http://chemistry.about.com ©2010 Todd Helmenstine About Chemistry			6A		$\frac{8 \mathrm{~A}}{\substack { \text { He } \\ \begin{subarray}{c}{\text { 4.02802 } \\ \text { Helium }{ \text { He } \\ \begin{subarray} { c } { \text { 4.02802 } \\ \text { Helium } } } \\ {\hline}}$	
1 H																		
1.00794																		
Hydrogen	2A											3A	4A	5A		7A		
3	4											5	6	7		8	9	10
Li	Be											B	C	N		0	F	Ne
6.941	9.012182											10.81	12.0107	14.0067	15.9994	18.9884032	20.1797	
Lithium	Beyllium											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon	
11	12											13	14	15	16	17	18	
Na	Mg											Al	Si	P	S	Cl	Ar	
22.889769	24.3050											26.9815386	28.8855	30.973762	32.06	35.453	39.948	
Sodium	Magnesium	3B	4B	5B	6B	7B		8B		1B	2B	Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
39.0983	${ }_{40.078}$	44.955912	47.867	${ }_{50} 0.9415$	51.9961	54.938045	55.845	58.933195	58.6934	${ }_{63.546}$	65.38	69.723	72.64	74.92160	78.96	79.904	83.798	
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe	
85.4678	87.62	88.90585	91.224	92.90638	95.96	[98]	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	126.90447	131.293	
Rubidium	Strontum	Ytrrium	Zirconium	Niobium	Molvodenum	Technetium	Ruthenium	Rhodium	Paladium	Siver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon	
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
132.905451	13.327		178.49	180.94788	183.84	186.207	190.23	192.217	195.084	196.966569	200.59	204.3833	207.2	208.98040	[209]	[210]	[222]	
Cesium	Barium	Lantranides	Hafrium	Tantaum	Tungsten	Rhenium	Osmium	lridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astaine	Radon	
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo	
[223]	[226]		[267]	[268]	[271]	[272]	[270]	[276]	[281]	[280]	[285]	[284]	[289]	[288]	[293]	[294]	[294]	
Francium	Radium	Actinides	Herfordium	Dubium	Seaborgium	Bohrium	Hassium	Meitnerium	msa	enater	coerrici	Ununtrium	Ununuadium	Ununpentium	Ununhe	nussepiun	Ununoctiu	

	® E E 昌哥
¢ ¢	
N	
©	

Electronegativity
Periodic Table of the Elements

