Ch 1 and 3: Factor of Safety

$F S=\frac{\text { Strength }}{\text { Max.Load }}=\frac{S_{y}}{\sigma_{\max }}$
Axial Members: Normal Strain and Normal Stress

$$
\begin{array}{ll}
\varepsilon=\frac{\Delta}{L} ; \quad & \sigma=\frac{P}{A} ; \quad \sigma=E \varepsilon, \quad \text { for } \sigma<S_{y} \\
\Delta=\frac{P L}{A E} ; \quad P=\frac{E A}{L} \Delta ; \quad k=\frac{E A}{L}
\end{array}
$$

Poisson

$$
\begin{aligned}
& v=-\frac{\varepsilon_{T}}{\varepsilon}=-\frac{\Delta b / b}{\Delta / L} \\
& =-\frac{\text { transverse strain normal to applied stress }}{\text { direct strain in direction of applied stress }}
\end{aligned}
$$

Energy Density

$$
U_{D}=\frac{1}{2} \sigma \varepsilon=\frac{1}{2} \frac{\sigma^{2}}{E}=\frac{1}{2} E \varepsilon^{2}
$$

Resilience $\quad U_{R}=\frac{1}{2} \frac{S_{y}^{2}}{E}$
Thin-walled Torsion Member

$$
\begin{aligned}
& \gamma=\frac{R \theta}{L} ; \quad \tau=\frac{T}{2 \pi R^{2} t} \\
& \tau=G \gamma, \text { for } \tau<\tau_{y}
\end{aligned}
$$

$$
\theta=\frac{T L}{2 \pi R^{3} t G}
$$

For a slab under shear force $V: \quad \tau=\frac{V}{A}$
Complementary Shear Stress τ : At a point, the shear stress on perpendicular planes are equal.

Normal/Shear Stiffness Strength relationships

$$
G=\frac{E}{2(1+v)} ; \tau_{y}=\frac{S_{y}}{\sqrt{3}}
$$

Hooke's Law, in General:

$$
\begin{aligned}
& \varepsilon_{x}=\frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E}-v \frac{\sigma_{z}}{E} \\
& \varepsilon_{y}=-v \frac{\sigma_{x}}{E}+\frac{\sigma_{y}}{E}-v \frac{\sigma_{z}}{E} \\
& \varepsilon_{z}=-v \frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E}+\frac{\sigma_{z}}{E} \\
& \gamma_{y z}=\frac{\tau_{y z}}{G} ; \quad \gamma_{z x}=\frac{\tau_{z x}}{G} ; \quad \gamma_{x y}=\frac{\tau_{x y}}{G}
\end{aligned}
$$

Plane Stress: No stress in z-direction (out-of-plane) Plane Strain: No strain in z-direction (out of plane)

Ch. 4 Axial Members

See table below

Deflection of Point on a simple truss:

- Draw extensions
- Draw perpendiculars from extensions
- Intercept is new location of Point.

Energy Method:

$$
\begin{aligned}
U_{\text {total }}=\sum U_{i} & =\sum \frac{1}{2}(P \Delta)_{i}=\sum \frac{1}{2}\left(\frac{P^{2} L}{A E}\right)_{i} \\
& =\sum \frac{1}{2}\left(\frac{E A}{L} \Delta^{2}\right)_{i}
\end{aligned}
$$

Work due to load F, displacing $\delta: \quad W=\frac{1}{2} F \delta$
Displacement of a Point: $\delta=\frac{2 U}{F}$;
Force to cause displacement: $F=\frac{2 U}{\delta}$

Thin-Walled Pressure Vessels

Cylindrical $\quad \sigma_{H}=\frac{p R}{t} ; \sigma_{L}=\frac{p R}{2 t}$

$$
\begin{aligned}
& \varepsilon_{H}=\frac{\sigma_{H}}{E}-v \frac{\sigma_{L}}{E}=\frac{p R}{t E}\left(1-\frac{v}{2}\right) ; \\
& \varepsilon_{L}=\frac{\sigma_{L}}{E}-v \frac{\sigma_{H}}{E}=\frac{p R}{t E}\left(\frac{1}{2}-v\right) \\
& \varepsilon_{t}=-v \frac{\sigma_{H}}{E}-v \frac{\sigma_{L}}{E}=-v \frac{3 p R}{2 t E}
\end{aligned}
$$

Spherical

$$
\sigma_{S}=\frac{p R}{2 t}
$$

$\varepsilon_{S}=\frac{\sigma_{S}}{E}-v \frac{\sigma_{S}}{E}=\frac{p R}{2 t E}(1-v) ;$
$\varepsilon_{t}=-v \frac{\sigma_{S}}{E}-v \frac{\sigma_{s}}{E}=-v \frac{p R}{t E}$
Ch. 5 Torsion Members

$$
\begin{array}{ll}
\tau(r)=\frac{T r}{J} ; \quad \tau_{\max }=\frac{T R}{J} ; \quad \theta=\frac{T L}{J G} \\
J=\int_{A} r^{2} d A ; & J_{\text {solid }}=\frac{\pi R^{4}}{2}=\frac{\pi D^{4}}{32} ; \\
J_{\text {thick }}=\frac{\pi}{2}\left(R_{o}^{4}-R_{i}^{4}\right) ; & J_{\text {thin }}=2 \pi R^{3} t
\end{array}
$$

Power

$$
\begin{aligned}
& P=T \omega \quad[\mathrm{~W}]=[\mathrm{N} \cdot \mathrm{~m}][\mathrm{rad} / \mathrm{s}] \\
& T[\mathrm{lb}-\mathrm{ft}]=\frac{33000 \times h p}{2 \pi N} ; \quad N[\mathrm{rpm}] \\
& T[\mathrm{lb}-\mathrm{in} .]=\frac{63000 \times h p}{N} ; \quad N[\mathrm{rpm}]
\end{aligned}
$$

Constant P, A, E	$\sigma=\frac{P}{A}$	$\varepsilon=\frac{\Delta}{L}=\frac{\sigma}{E}$	$\Delta=\varepsilon L=\frac{P L}{A E}$
Discretely Varying	$\sigma_{i}=\frac{P_{i}}{A_{i}}$	$\varepsilon_{i}=\frac{\Delta_{i}}{L_{i}}=\frac{\sigma_{i}}{E_{i}}$	$\Delta=\sum\left(\frac{P L}{A E}\right)_{i}$
Cont. Varying	$\sigma(x)=\frac{P(x)}{A(x)}$	$\varepsilon(x)=\frac{d u}{d x}=\frac{\sigma(x)}{E(x)}$	$\Delta=\int_{L} \frac{P(x)}{A(x) E(x)} d x$

For all problems:

- Equilibrium
- Compatibility

Ch 6: Beams

Bending Stress (bending about z-axis):

$$
\begin{aligned}
& \sigma(y)=-\frac{M_{z} y}{I_{z}} \\
& \sigma_{\max }=\frac{M c}{I}=\frac{M y_{\max }}{I}=\frac{M}{Z}
\end{aligned}
$$

Moment of Inertia of common shapes

Solid Rect.	$I=\frac{b d^{3}}{12}$
Solid Circle	$I=\frac{\pi R^{4}}{4}=\frac{\pi D^{4}}{64}$

Parallel Axis Theorem

$I=I_{o}+A d^{2} ; d$ measured from (bending) axis
Section Modulus about z-axis:
$Z_{z}=\frac{I_{z}}{c}=\frac{I_{z}}{y_{\max }}$
I-Beams W: wide flange; S: standard
W \# x \#\#: Nominal Depth x lb (per foot)

Beam Deflection

$v^{\prime \prime}(x)=\frac{M(x)}{E I}$
$v^{\prime}(x)=\frac{1}{E I}\left[\int M(x) d x+c_{1}\right]=\theta(x)$
$v(x)=\frac{1}{E I}\left[\int\left(\int M(x) d x\right) d x+c_{1} x+c_{2}\right]$
$v>0$:up; $v<0$: down; $v^{\prime}>0$ positive slope
Solve c_{1} and c_{2} by applying Boundary Conditions:

Pin/Roller	$v=0$
Wall	$v=0, \quad v^{\prime}=0$
Enforced displacement at x_{o}	$v\left(x_{o}\right)=$ value

Shear Stress (shear force in \boldsymbol{y}-direction):

$\tau(y)=\frac{V A^{*} y^{*}}{I t}$
Maximum τ for Common Shapes.

Solid Rect.	$\tau_{\max }=\frac{3}{2} \frac{V}{A}$
Solid Circle	$\tau_{\max }=\frac{4}{3} \frac{V}{A}$
Hollow Circle	$\tau_{\max }=\frac{4}{3} \frac{V}{A}\left[\frac{R_{o}^{2}+R_{o} R_{i}+R_{i}^{2}}{R_{o}^{2}+R_{i}^{2}}\right]$

Shear Flow

$$
q=\tau t=\frac{V A^{*} y^{*}}{I}
$$

Shear Force parallel to neutral axis given y-value over beam length Δs :

$$
F_{s}=\tau(t \Delta s)=q \Delta s
$$

Shear Force per unit length of beam parallel to neutral axis given y-value:

$$
\frac{F_{s}}{\Delta s}=\tau t=q
$$

Beam Design:

$$
\begin{aligned}
& \sigma_{\max }<\sigma_{\text {allowable }} \\
& \tau_{\max }<\tau_{\text {allowable }} \\
& \delta_{\max }=\left|v_{\max }\right|<\tau_{\text {allowable }}
\end{aligned}
$$

Ch 7: Combined Loading

- σ is caused by Axial Loading (struts, columns), Bending Moments (beams) and Pressure in Pressure Vessels
- τ is caused by Torsion (shafts) and Shear Stress (beams)

1. Determine Internal Loads that act on a crosssection.
2. Determine Stresses caused by Loads
3. Determine where those stresses act.
4. Draw the stress element ... the material point (as a cube/square) and the stresses that act on it.

Ch 8. Stress Transformation

Given initial stress state: $\sigma_{x}, \sigma_{y}, \tau_{x y}$
Rotation by θ CCW:
$\sigma_{x \prime}(\theta)=\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta$
$\sigma_{y \prime}(\theta)=\frac{\sigma_{x}+\sigma_{y}}{2}-\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta-\tau_{x y} \sin 2 \theta$
$\tau_{x \prime y^{\prime}}(\theta)=-\frac{\sigma_{x}-\sigma_{y}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta$

Principal Stresses:

$\sigma_{I}, \sigma_{I I}=\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\left(\tau_{x y}\right)^{2}}$

Principal Directions:

$\tan 2 \theta_{p}=\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}} ;$ match θ_{I} to $\sigma_{I} ; \theta_{I I}$ to $\sigma_{I I}$
Maximum Shear Stress (in $x-y$ plane)
$\tau_{\max }= \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\left(\tau_{x y}\right)^{2}}$
Maximum Shear Stress on a face defined by:
$\tan 2 \theta_{s}=-\frac{\sigma_{x}-\sigma_{y}}{2 \tau_{x y}}$

Mohr's Circle

- $\operatorname{Plot} X\left(\sigma_{x},-\tau_{x y}\right), Y\left(\sigma_{y},+\tau_{x y}\right)$
- Circle centered at $\left(\sigma_{\text {ave }}, 0\right)$, radius $\left.=\tau_{\max }\right)$
- Ends of diameter represent $x-y$ faces of element.
- Rotate θ in element, Rotate 2θ in circle

Ch 9. Failure Theories

Maximum Normal Stress Criterion;

Brittle Materials
Tensile: $\quad \sigma_{I} \leq S_{u}$
Compressive: $\left|\sigma_{I I}\right| \leq S_{c}$
Maximum Shear Stress Criterion (Tresca);
Ductile Materials
$\tau_{\max } \leq \tau_{y}$
$\tau_{\max }=\max \left[\frac{\left|\sigma_{I}-\sigma_{I I}\right|}{2}, \frac{\left|\sigma_{I}\right|}{2}, \frac{\left|\sigma_{I I}\right|}{2}\right]$
Shear Yield Strength:

$$
\tau_{y}=\frac{S_{y}}{2}
$$

Von Mises Failure Criterion (Max. Distortion Energy); Ductile Materials

$$
\sigma_{o} \leq S_{y}
$$

$$
\sigma_{o}=\left[\frac{\left(\sigma_{I}-\sigma_{I I}\right)^{2}+\left(\sigma_{I I}-\sigma_{I I I}\right)^{2}+\left(\sigma_{I I I}-\sigma_{I}\right)^{2}}{2}\right]^{1 / 2}
$$

Plane Stress

$$
\begin{aligned}
\sigma_{o} & =\left[\sigma_{I}^{2}-\sigma_{I} \sigma_{I I}+\sigma_{I I}^{2}\right]^{1 / 2} \\
\sigma_{o} & =\left[{\sigma_{x}}^{2}-\sigma_{x} \sigma_{y}+{\sigma_{y}}^{2}+3 \tau_{x y}{ }^{2}\right]^{1 / 2}
\end{aligned}
$$

Shear Yield Strength:

$$
\tau_{y}=\frac{S_{y}}{\sqrt{3}}
$$

Ch 10. Buckling

Critical Buckling Load:

$$
P_{c r}=\frac{\pi^{2} E I}{L_{e}^{2}}
$$

Buckling Strength:

$$
\sigma_{c r}=\frac{\pi^{2} E I}{A L_{e}^{2}}
$$

Buckling can occur about either the y - or z-axis (assuming x-axis is along axial direction).
For buckling about the z-axis:

$$
P_{c r, z}=\frac{\pi^{2} E I_{z}}{L_{e, Z}^{2}}
$$

I_{z} is I-about z-axis, $L_{e, z}$ is effective length for z-axis buckling.

For buckling about the y-axis:

$$
P_{c r, y}=\frac{\pi^{2} E I_{y}}{L_{e, y}^{2}}
$$

Effective Length, L_{e}

Pinned-Pinned	$L_{e}=L$
Fixed-Fixed	$L_{e}=0.5 L$
Free-Fixed	$L_{e}=2 L$
Pinned-Fixed	$L_{e}=0.7 L$

Radius of Gyration

$$
r=\sqrt{\frac{I}{A}} ; \quad r_{z}=\sqrt{\frac{I_{z}}{A}} ; \quad r_{y}=\sqrt{\frac{I_{y}}{A}}
$$

So that:

$$
\sigma_{c r}=\frac{\pi^{2} E r^{2}}{L_{e}^{2}}
$$

