GIVEN: A car (mass 2000 kg ) is traveling on a flat road at a constant speed of $v=24.0 \mathrm{~m} / \mathrm{s}$.
At Point $A$ the driver applies the brakes so that the car reduces its speed at a uniform rate for 6.00 seconds until reaching Point $C$, when its speed is $v_{C}=18.0 \mathrm{~m} / \mathrm{s}$.

Point $B$ is halfway between $A$ and $C$ (in terms of TIME). The road between Points $A$ and $C$ is a circular arc, with a constant radius of curvature of $\rho=280 \mathrm{~m}$.
REQ'D: (a) Determine the magnitude of the total force in the horizontal plane between the tires and ground at Point B. Do not include the force of gravity (which is downward into the paper, perpendicular to the horizontal plane).
(b) Using either kinematics or work-energy, determine distance $D_{1}$.


