2/2 Rectilinear Motion
Fundamental Kinematics Equations:
(1) $\quad v=\frac{d s}{d t}=\dot{s}$
(2) $a=\frac{d v}{d t}=\dot{v}=\frac{d^{2} s}{d t^{2}}=\ddot{s}$
(3) $v d v=a d s$

When $a$ is constant:

$$
\begin{aligned}
& v=v_{o}+a t \\
& s=s_{o}+v_{o} t+\frac{1}{2} a t^{2} \\
& v^{2}=v_{o}^{2}+2 a\left(s-s_{o}\right)
\end{aligned}
$$

If $a$ is not constant, use one of the fundamental kinematic equations and appropriately integrate/differentiate.
2/3 Plane Curvilinear Motion
$\underline{\mathbf{v}}=\frac{d \underline{\mathbf{r}}}{d t}=\dot{\mathbf{r}}$
$\underline{\mathbf{a}}=\frac{d \underline{\mathbf{v}}}{d t}=\dot{\mathbf{v}}$
2/4 Rectilinear Coordinates

$$
\begin{aligned}
& \underline{\mathbf{r}}=x \hat{\mathbf{1}}+y \hat{\mathbf{\jmath}} \\
& \underline{\mathbf{v}}=\underline{\mathbf{r}}=\dot{x} \hat{\mathbf{\imath}}+\dot{y} \hat{\mathbf{\jmath}}=v_{x} \hat{\mathbf{\imath}}+v_{y} \hat{\mathbf{\jmath}} \\
& \underline{\mathbf{a}}=\underline{\dot{\mathbf{v}}}=\ddot{\ddot{\mathbf{v}}}=\ddot{x} \hat{\mathbf{\imath}}+\ddot{y} \hat{\mathbf{\jmath}}=a_{x} \hat{\mathbf{\imath}}+a_{y} \hat{\mathbf{\jmath}}
\end{aligned}
$$

Speed (magnitude of velocity): $v=\sqrt{v_{x}^{2}+v_{y}^{2}}$
Direction of motion: $\tan \theta=\frac{v_{y}}{v_{x}}$
Acceleration $a=\sqrt{a_{x}^{2}+a_{y}^{2}}$

## Projectile Motion

initial position ( $x_{0}, y_{0}$ ), initial velocity $v_{0}$ :

$$
\begin{array}{ll}
a_{x}=0 & a_{y}=-g \\
v_{x}=v_{o, x} & v_{y}=v_{o, y}-g t \\
x=x_{o}+v_{o, x} t & y=y_{o}+v_{o, y} t-\frac{1}{2} g t^{2}
\end{array}
$$

Also: $\left(v_{y}\right)^{2}=\left(v_{o, y}\right)^{2}-2 g\left(y-y_{o}\right)$

2/5 Normal and Tangential Coordinates ( $n-t$ )

$$
\begin{aligned}
& \underline{\mathbf{v}}=v \underline{\mathbf{e}_{\mathbf{t}}}=\rho \dot{\beta} \underline{\mathbf{e}_{\mathbf{t}}} \\
& \underline{\mathbf{a}}=\underline{\dot{\mathbf{v}}}=a_{t} \underline{\mathbf{e}_{\mathbf{t}}}+a_{n} \underline{\mathbf{e}_{\mathbf{n}}}=\dot{v} \underline{\mathbf{e}_{\mathbf{t}}}+\left|\frac{v^{2}}{\rho}\right| \rho \dot{\beta}^{2}|v \dot{\beta}\rangle \underline{\mathbf{e}_{\mathbf{n}}}
\end{aligned}
$$

Circular motion:

$$
\begin{aligned}
& \rho \rightarrow r, \quad \dot{\beta} \rightarrow \dot{\theta} ; \\
& \quad v=r \dot{\theta} \\
& \quad a_{t}=\dot{v}=r \ddot{\theta}, \quad a_{n}=v^{2} / r=r \dot{\theta}^{2}=v \dot{\theta}
\end{aligned}
$$

## 2/6 Polar Coordinates ( $r-\theta$ )

$$
\underline{\mathbf{r}}=r \underline{\mathbf{e}_{\mathbf{r}}}
$$

$$
\underline{\mathbf{v}}=v_{r} \underline{\mathbf{e}_{\mathbf{r}}}+v_{\theta} \underline{\mathbf{e}_{\boldsymbol{\theta}}}=\dot{r} \underline{\mathbf{e}_{\mathbf{r}}}+r \dot{\theta} \underline{\mathbf{e}_{\boldsymbol{\theta}}}
$$

$$
\underline{\mathbf{a}}=a_{r} \underline{\mathbf{e}_{\mathbf{r}}}+a_{\theta} \underline{\mathbf{e}_{\boldsymbol{\theta}}}=\left(\overline{\ddot{r}}-r \dot{\theta}^{2}\right) \underline{\mathbf{e}_{\mathbf{r}}}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \underline{\mathbf{e}_{\boldsymbol{\theta}}}
$$

## 2/8 Relative Motion

$\underline{r_{A}}=\underline{r_{B}}+\underline{r_{A / B}}$
$\underline{v_{\mathrm{A}}}=\underline{\mathrm{v}_{\mathrm{B}}}+\underline{\mathrm{v}_{\mathrm{A} / \mathrm{B}}}$
$\underline{\mathbf{a}_{\mathrm{A}}}=\underline{\mathbf{a}_{\mathrm{B}}}+\underline{\mathbf{a}_{\mathrm{A} / \mathrm{B}}}$

## The same vector can be represented in different

 coordinate systems (x-y), (n-t), (r-ध).Lay out the same vector in different coordinate systems. Use vector geometry/trigonometry to determine sides of the vector triangle in different coordinate systems.

$$
\begin{aligned}
& \underline{\mathbf{r}}=x \hat{\mathbf{1}}+y \hat{\mathbf{\jmath}}=r \underline{\mathbf{e}_{\mathbf{r}}} \\
& \underline{\mathbf{v}}=v_{x} \hat{\mathbf{1}}+v_{y} \hat{\mathbf{\jmath}}=v \underline{v} \underline{\mathbf{e}}_{\mathbf{t}}=v_{r} \underline{\mathbf{e}_{\mathbf{r}}}+v_{\theta} \mathbf{e}_{\boldsymbol{\theta}} \\
& \underline{\mathbf{a}}=a_{x} \hat{\mathbf{\imath}}+a_{y} \hat{\mathbf{\jmath}}=a_{t} \underline{\mathbf{e}_{\mathbf{t}}}+a_{n} \underline{\mathbf{e}_{\mathbf{n}}}=\underline{a_{r}} \underline{\mathbf{e}_{\mathbf{r}}}+a_{\theta} \underline{\mathbf{e}_{\boldsymbol{\theta}}}
\end{aligned}
$$

The magnitude of a vector is the same in any coordinate system, e.g., the magnitude of the velocity and acceleration are, respectively:

$$
\begin{aligned}
& v=\sqrt{v_{x}^{2}+v_{y}^{2}}=v_{t}=\sqrt{v_{r}^{2}+v_{\theta}^{2}} \\
& a=\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{a_{t}^{2}+a_{n}^{2}}=\sqrt{a_{r}^{2}+a_{\theta}^{2}}
\end{aligned}
$$

| $\begin{aligned} & \text { 3/4 Rectilinear Motion } \\ & \qquad \begin{array}{l} \sum \underline{\mathbf{F}}=m \mathbf{a} \\ \\ \Sigma F_{x}=m a_{x} \quad \Sigma F_{y}=m a_{y} \quad \Sigma F_{z}=m a_{z} \\ \|\Sigma \underline{\mathbf{F}}\|=\sqrt{\left(\Sigma F_{x}\right)^{2}+\left(\Sigma F_{y}\right)^{2}+\left(\Sigma F_{z}\right)^{2}} \\ a=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}} \end{array} \end{aligned}$ | 3/7 Potential Energy $\begin{aligned} V_{g}=m g h & \Delta V_{g}=m g(\Delta h) \\ V_{e}=\frac{1}{2} k x^{2} & \Delta V_{e}=\frac{1}{2} k\left(x_{2}^{2}-x_{1}^{2}\right) ; \quad x=\text { displ. of spring } \\ & \text { from equilib. } \end{aligned}$ <br> Work-Energy Equation <br> Work of all non-conserv. forces $U_{n c}$ equals change in mechanical energy $E=T+V_{g}+V_{e}$ $\begin{aligned} & U_{n c}=\Delta T+\Delta V_{g}+\Delta V_{e}=\Delta E \\ & E_{2}=E_{1}+U_{n c} \end{aligned}$ |
| :---: | :---: |
| 3/5 Plane Curvilinear Motion <br> Rectangular $\begin{array}{ll} \Sigma F_{x}=m a_{x} & a_{x}=\ddot{x} \\ \Sigma F_{y}=m a_{y} & a_{y}=\ddot{y} \end{array}$ <br> Normal-Tangential $\begin{array}{ll} \Sigma F_{n}=m a_{n} & a_{n}=v^{2} / \rho=\rho \dot{\beta}^{2}=v \dot{\beta} \\ \Sigma F_{t}=m a_{t} & a_{t}=\dot{v} \end{array}$ <br> Polar $\begin{array}{ll} \Sigma F_{r}=m a_{r} & a_{r}=\ddot{r}-r \dot{\theta}^{2} \\ \Sigma F_{\theta}=m a_{\theta} & a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta} \end{array}$ | 3/8 Linear Impulse and Linear Momentum $\begin{aligned} & \underline{\mathbf{G}}=m \underline{\mathbf{v}} \\ & \Sigma \underline{\mathbf{F}}=\underline{\mathbf{G}}=m \dot{\mathbf{v}}^{\prime} \text { (external forces) } \\ & \Sigma F_{x}=\dot{G}_{x}=m \dot{v}_{x} ; \quad \Sigma F_{y}=\dot{G}_{y} ; \quad \Sigma F_{z}=\dot{G}_{z} \\ & \int_{t_{1}}^{t_{2}} \Sigma \underline{\mathbf{F}} d t=\Delta \underline{\mathbf{G}}=m \Delta \underline{\mathbf{v}} \\ & \underline{\mathbf{G}}_{2}=\underline{\mathbf{G}}_{1}+\int_{t_{1}}^{t_{2}} \Sigma \underline{\mathbf{F}} d t \end{aligned}$ <br> Collisions: $\underline{\mathbf{G}}$ of system conserved if no external force. |
| 3/6 Work and Kinetic Energy <br> Work done by force $\underline{\mathbf{F}}$ during displacement $d \underline{\mathbf{r}}$ : $d U=\underline{\mathbf{F}} \cdot d \underline{\mathbf{r}}$ <br> Work done by force $\underline{\mathbf{F}}$ during finite motion (1) to (2): $U_{1-2}=\int_{1}^{2} \underline{\mathbf{F}} \cdot d \underline{\mathbf{r}}=\int_{1}^{2}\left(F_{x} d x\right)+\left(F_{y} d y\right)+\left(F_{z} d z\right)$ <br> Work done by constant force $\underline{\mathbf{P}}$ moving distance $\Delta s$ $U_{P}=\int_{1}^{2} \underline{\mathbf{F}} \cdot d \underline{\mathbf{r}}=P \Delta s$ <br> Work done by spring force on object $U_{s}=\int_{1}^{2} \underline{\mathbf{F}} \cdot d \underline{\mathbf{r}}=-\frac{1}{2} k\left(x_{2}^{2}-x_{1}^{2}\right)=\frac{1}{2} k\left(x_{1}^{2}-x_{2}^{2}\right)$ | 3/9 Angular Impulse and Angular Momentum $\begin{aligned} & \underline{\mathbf{H}}_{o}=\underline{\mathbf{r}} \times m \underline{\mathbf{v}} \\ & \underline{\mathbf{H}}_{o}=m\left(y v_{z}-z v_{y}\right) \hat{\mathbf{i}}+m\left(z v_{x}-x v_{z}\right) \hat{\mathbf{j}}+m\left(x v_{y}-y v_{x}\right) \hat{\mathbf{k}} \\ & \Sigma \underline{\mathbf{M}}_{o}=\dot{\mathbf{H}}_{o}=\underline{\mathbf{r}} \times m \underline{\dot{\mathbf{v}}} \quad(\text { external moments }) \\ & \Sigma M_{O x}=\dot{H}_{O x} ; \quad \Sigma M_{O y}=\dot{H}_{O y} ; \quad \Sigma M_{O z}=\dot{H}_{O z} \\ & \int_{t_{1}}^{t_{2}} \Sigma \underline{\mathbf{M}}_{O} d t=\Delta \underline{\mathbf{H}}_{o} \\ & \left(\underline{\mathbf{H}}_{o}\right)_{2}=\left(\underline{\mathbf{H}}_{o}\right)_{1}+\int_{t_{1}}^{t_{2}} \Sigma \underline{\mathbf{M}}_{O} d t \end{aligned}$ <br> Collisions: $\underline{\mathbf{H}}_{o}$ of system conserved if no external moment. |
| Work done by gravity (near earth) $U_{g}=\int_{1}^{2} \underline{\mathbf{F}} \cdot d \underline{\mathbf{r}}=-m g\left(y_{2}-y_{1}\right)=m g\left(y_{1}-y_{2}\right)$ <br> Work done by gravity (far from earth) $U_{g}=\int_{1}^{2} \underline{\mathbf{F}} \cdot d \underline{\mathbf{r}}=G m_{e} m R^{2}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)$ | 3/12 Impact <br> Coefficient of Restitution $e=\frac{v_{2}^{\prime}-v_{1}^{\prime}}{v_{1}-v_{2}}$ <br> Only affects velocity normal to impact plane. |
| Work-Kinetic Energy Theorem $\begin{aligned} & U_{1-2}=\int_{1}^{2} \underline{\mathbf{F}} \cdot d \underline{\mathbf{r}}=\int_{1}^{2}\left(F_{t} d s\right)=\int_{1}^{2}\left(m a_{t} d s\right)= \\ & \int_{1}^{2}(m v d v)=\frac{1}{2} m\left(v_{2}^{2}-v_{1}^{2}\right)=T_{2}-T_{1} \end{aligned}$ <br> Work done by all forces on mass equals $\Delta T$ : $U_{1-2}=\Delta T$ <br> Power <br> $d U$ | Collisions: <br> $\underline{\mathbf{G}}$ of system conserved if no net external force on system <br> $\underline{\mathbf{H}}_{o}$ of system conserved if no net external moment <br> Elastic: objects bounce; energy conserved: $T_{i}=T_{f}$ <br> Inelastic: objects stick; energy not cons'd: $\underline{\mathbf{v}}_{1}^{\prime}=\underline{\mathbf{v}}_{2}^{\prime}$ <br> Impact: objects bounce; energy not cons'd: $e=\frac{v_{2}^{\prime}-v_{1}^{\prime}}{v_{1}-v_{2}}$ |
| Efficiency: $e=\frac{P_{\text {out }}}{P_{\text {in }}} \quad \text { Overall Efficiency: } e=e_{m} e_{e} e_{t}$ | Units <br> Work: $\quad 1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}$ <br> Energy: $1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s} ; 1 \mathrm{hp}=550 \mathrm{ft}-\mathrm{lb} / \mathrm{sec}=746 \mathrm{~W}$ |

## 5/2 Rotation <br> Fundamental Kinematics Equations - Angular Motion <br> (analogous to linear motion)

(1) $\omega=\frac{d \theta}{d t}=\dot{\theta}$
(2) $\alpha=\frac{d \omega}{d t}=\dot{\omega}=\frac{d^{2} \theta}{d t^{2}}=\ddot{\theta}$
(3) $\omega d \omega=\alpha d \theta$

When $\alpha$ is constant:

$$
\begin{aligned}
& \omega=\omega_{o}+\alpha t \\
& \theta=\theta_{o}+\omega_{o} t+\frac{1}{2} \alpha t^{2} \\
& \omega^{2}=\omega_{o}^{2}+2 \alpha\left(\theta-\theta_{o}\right)
\end{aligned}
$$

If $\alpha$ is not constant, use one of the fundamental kinematic equations and appropriately integrate/differentiate.

Vector Algebra for motion of Point $A$ about a fixed axis through Point $O$ (relative to Point $O$ )
$\underline{\mathbf{v}_{\boldsymbol{A}}}=\underline{\boldsymbol{\omega}} \times \underline{\mathbf{r}}=\omega r \underline{\mathbf{e}_{\boldsymbol{t}}} \quad \underline{\mathbf{r}}$ is from Pt 0 to $\operatorname{Pt} A$.
$\underline{\mathbf{a}_{\boldsymbol{A}}}=\underline{\mathbf{a}_{t}}+\underline{\mathbf{a}_{n}}=\alpha r \underline{\mathbf{e}_{t}}+\omega^{2} r \underline{\mathbf{e}_{n}}$
$=\overline{\boldsymbol{\alpha}} \times \underline{\mathbf{r}} \overline{+} \underline{\boldsymbol{\omega}} \times(\underline{\boldsymbol{\omega}} \times \underline{\mathbf{r}})$
5/3 Absolution Motion

- Define geometry in terms of linear \& angular positions.
- Take derivative to relate linear \& angular velocities.
- Take derivative to relate linear \& angular accelerations. e.g., in a triangle,

$$
y=x \tan \theta \ldots \dot{y}=\dot{x} \tan \theta+x \sec ^{2} \theta(\dot{\theta})
$$

6/2 General Plane Motion Equations
$\sum \underline{\mathbf{F}}=m \underline{\mathbf{a}}$

$$
\begin{aligned}
& \quad \Sigma F_{x}=m a_{x} \quad \Sigma F_{y}=m a_{y} \\
& |\Sigma \underline{\mathbf{F}}|=\sqrt{\left(\Sigma F_{x}\right)^{2}+\left(\Sigma F_{y}\right)^{2}} \\
& a=\sqrt{a_{x}^{2}+a_{y}^{2}}
\end{aligned}
$$

Assuming rotation only about $z$-axis, only need use scalar version of moment, etc.

Moments about Center of Mass Pt. $G$ :
$\sum M_{G}=I_{G} \alpha$
Moments about non-accelerating or fixed Point $O$ :
$\sum M_{O}=I_{O} \alpha$
Moments about arbitrary Point $P$ :
$\sum M_{P}=I_{G} \alpha+m a_{G} d$
where $a_{G}$ is the magnitude of acceleration of C.O.M., and $d$ is the perpendicular distance from point P to the line of action of $\underline{a_{G}}$
Moments about arbitrary Point $P$ :

$$
\sum \underline{\mathbf{M}_{\mathbf{P}}}=I_{P} \underline{\boldsymbol{\alpha}}+\underline{\boldsymbol{\rho}_{\boldsymbol{G}}} \times m \underline{\mathbf{a}_{\mathbf{p}}}
$$

where:
$\underline{\boldsymbol{\alpha}}$ is the vector angular acceleration,
$\underline{\rho}_{\boldsymbol{G}}$ is vector position from Pt. $P$ to Pt. $G$
$\underline{\mathbf{a}}_{\mathbf{p}}$ is vector acceleration of Pt. P
6/3 Translation

$$
\sum \underline{\mathbf{F}}=m \underline{\mathbf{a}} \quad ; \quad \sum M_{G}=0
$$

6/4 Fixed-Axis Rotation
$\sum \underline{\mathbf{F}}=m \underline{\mathbf{a}} \quad ; \quad \sum M_{G}=I_{G} \alpha ; \quad \sum M_{O}=I_{O} \alpha$
6/5 General Motion
$\sum \underline{\mathbf{F}}=m \underline{\mathbf{a}} \quad ; \quad \sum M_{G}=I_{G} \alpha \quad ; \quad \sum M_{p}$ equations

## Moments of Inertia for basic shapes:

Slender Bar about COM; Slender Bar about end

$$
\frac{m l^{2}}{12}
$$

Cylindrical Disk
$\frac{m R^{2}}{2}$
Sphere

$$
\frac{2}{5} m R^{2}
$$

Parallel Axis Theorem: $\quad I=I_{G}+m d^{2}$
Radius of Gyration: $\quad I=m k^{2}$

