Ch. 2 Force Systems

Rectangular Components	
Vector	$\underline{\mathbf{F}} = F_x \hat{\imath} + F_y \hat{\jmath}$
Vector components	$\underline{\mathbf{F}_{\mathbf{x}}} = F_{\mathbf{x}}\hat{\imath} ; \underline{\mathbf{F}_{\mathbf{y}}} = F_{\mathbf{y}}\hat{\jmath}$
Scalar components (POS or NEG	$F_x = F \cos \theta_x$
depending on direction wrt +axes)	$F_y = F\sin\theta_x = F\cos\theta_y$
Magnitude and Direction wrt + <i>x</i>	$F = \sqrt{F_x^2 + F_y^2} ; \theta = \tan^{-1}\left(\frac{F_y}{F_x}\right)$
Projection of force	$\underline{\mathbf{n}}$ = unit vector in direction of
onto any direction	interest
(defined by <u>n</u> . Component of F in	$\theta_n = \text{angle between } \underline{\mathbf{F}} \text{ and } \underline{\mathbf{n}}.$
<u>n</u> -direction.	$F_n = \underline{\mathbf{F}} \cdot \underline{\mathbf{n}} = F \cos \theta_n = F_x n_x + F_y n_y$
Resultant force	$\underline{\mathbf{R}} = \sum \underline{\mathbf{F}} = (\sum F_x)\hat{\imath} + (\sum F_y)\hat{\jmath}$
	$\underline{\mathbf{R}} = R_x \hat{\imath} + R_y \hat{\jmath}$

Moment about a Point O

Position vector: Pt O to LOA of <u>F</u>	$\underline{\mathbf{r}} = r_x \hat{\imath} + r_y \hat{\jmath}$
Vector	$\underline{\mathbf{M}_{o}} = \underline{\mathbf{r}} \times \underline{\mathbf{F}}$
Scalar	$M_O = rF\sin\alpha = \left(r_xF_y - r_yF_x\right)$
(+ CCW; -CW)	$\alpha = \text{angle } \mathbf{from} \underline{r} \mathbf{to} \underline{F}$
Scalar Magnitude	$M_0 = Fd$
	d = perpendicular distance
Varignon's Thm:	
If all forces	$\mathbf{M}_{\boldsymbol{O}} = \Sigma(\underline{\mathbf{r}} \times \underline{\mathbf{F}}) = \underline{\mathbf{r}} \times \Sigma \underline{\mathbf{F}} = \underline{\mathbf{r}} \times \underline{\mathbf{R}}$
concurrent at a	$\frac{1}{10} = 2(\underline{1} \land \underline{1}) = \underline{1} \land 2\underline{1} = \underline{1} \land \underline{\mathbf{R}}$
point (e.g., Pt. <i>O</i>)	
Couple: two equal	Magnitude: $M = Fd$
and opp. forces	(CW/CCW)
	Vector: $\underline{\mathbf{M}} = \underline{\mathbf{r}} \times \underline{\mathbf{F}}$

Resultants (Force-Couple System ... $\underline{R} - M_0$)

Resultant force	$\underline{\mathbf{R}} = \sum \underline{\mathbf{F}} = (\sum F_x)\hat{\imath} + (\sum F_y)\hat{\jmath}$
	$\underline{\mathbf{R}} = R_x \hat{\iota} + R_y \hat{j}$
	$R_x = \sum F_x$; $R_y = \sum F_y$
	$R = \sqrt{R_x^2 + R_y^2}$
	$\theta_R = \tan^{-1}\left(\frac{R_y}{R_x}\right) = \tan^{-1}\left(\frac{\sum F_y}{\sum F_x}\right)$
Net moment	$\underline{\mathbf{M}_{o}} = \sum \underline{\mathbf{M}_{o}} = \sum (\underline{\mathbf{r}} \times \underline{\mathbf{F}}) + \sum \mathbf{M}_{Couple}$
	$M_o = \sum Fd$
Moving force away	$\underline{\mathbf{R}} = \sum \underline{\mathbf{F}}$
from Pt. O	$M_0 = \sum Fd = DR = xR_y - yR_x$
	$D =$ perpendicular distance to \mathbf{R}
	$x\hat{\imath} + y\hat{\jmath}$ from Pt <i>O</i> to LOA of <u>R</u>

3D Force Systems

Vector	$\underline{\mathbf{F}} = F_x \hat{\imath} + F_y \hat{\jmath} + F_z \hat{k}$
	$= F\left[(\cos\theta_x)\hat{\imath} + (\cos\theta_y)\hat{\jmath} + (\cos\theta_z)\hat{k}\right]$
Scalar	$F_x = F\cos\theta_x; F_y = F\cos\theta_y$
Components	$F_z = F \cos \theta_z$
Magnitude	$F = \sqrt{F_x^2 + F_y^2 + F_Z^2}$

Mag and Dir. <u>F</u> Line of Action of <u>F</u> from Pt A to Pt B	$ \frac{\mathbf{F}}{\mathbf{E}} = F \mathbf{n}_{F} $ $ \underline{\mathbf{n}}_{F} = \frac{\overline{AB}}{AB} = \frac{(x_{B} - x_{A})\hat{\imath} + (y_{B} - y_{A})\hat{\jmath} + (z_{B} - z_{A})\hat{k}}{\sqrt{(x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2} + (z_{B} - z_{A})^{2}}} $ $ = (\cos \theta_{x})\hat{\imath} + (\cos \theta_{y})\hat{\jmath} + (\cos \theta_{z})\hat{k} $
Angle of force above plane Component of force in plane (here x-y	$\phi = \text{angle above } x \text{-} y \text{ plane}$ $\theta = \text{angle in } x \text{-} y \text{ plane from } x \text{-} \text{axis}$ Component in plane: $F_{xy} = F \cos \phi$ Normal plane: $F_z = F \sin \phi$ $F_x = F_{xy} \cos \theta = F \cos \phi \cos \theta$
plane)	$F_{y} = F_{xy} \sin \theta = F \cos \phi \sin \theta$

Dot Product α = angle between vectors $\underline{\mathbf{P}} \cdot \underline{\mathbf{Q}} = PQ \cos \alpha = P_x Q_x + P_y Q_y + P_z Q_z$ $\cos \alpha = \frac{\underline{\mathbf{P}} \cdot \underline{\mathbf{Q}}}{PQ}$

Projection of $\underline{\mathbf{F}}$ onto direction of unit vector $\underline{\mathbf{n}}$: $\underline{\mathbf{F}} = F_x \hat{\imath} + F_y \hat{\jmath} + F_z \hat{k} = F[(\cos \theta_x) \hat{\imath} + (\cos \theta_y) \hat{\jmath} + (\cos \theta_z) \hat{k}]$ $\underline{\mathbf{n}} = n_x \hat{\imath} + n_y \hat{\jmath} + n_z \hat{k}$ $\underline{\mathbf{n}} = [(\cos \theta_{nx}) \hat{\imath} + (\cos \theta_{ny}) \hat{\jmath} + (\cos \theta_{nz}) \hat{k}]$ $F_n = \underline{\mathbf{F}} \cdot \underline{\mathbf{n}} = F_x n_x + F_y n_y + F_z n_z$ $F_n = \underline{\mathbf{F}} \cdot \underline{\mathbf{n}} = F[(\cos \theta_x)(\cos \theta_{nx}) + (\cos \theta_y)(\cos \theta_{ny}) + (\cos \theta_z)(\cos \theta_{nz})]$ $\cos \alpha = \frac{\underline{\mathbf{F}} \cdot \underline{\mathbf{n}}}{F}$

Moment and Couple $\underline{\mathbf{r}} = r_x \hat{\imath} + r_y \hat{\jmath} + r_z \hat{k} ; \quad \underline{\mathbf{F}} = F_x \hat{\imath} + F_y \hat{\jmath} + F_z \hat{k}$ $\underline{\mathbf{M}_0} = \underline{\mathbf{r}} \times \underline{\mathbf{F}} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}$ $\underline{\mathbf{M}_0} = (r_y F_z - r_z F_y) \hat{\imath} + (r_z F_x - r_x F_z) \hat{\jmath} + (r_x F_y - r_y F_x) \hat{k}$ $\underline{\mathbf{M}_0} = M_{0x} \hat{\imath} + M_{0y} \hat{\jmath} + M_{0z} \hat{k}$ $M_0 = \sqrt{M_{0x}^2 + M_{0y}^2 + M_{0z}^2}$

In any direction, λ , projection of $\underline{\mathbf{M}}_{o}$ onto λ -axis, where $\underline{\mathbf{n}}$ is unit vector in λ -direction:

$$M_{O\lambda} = \underline{\mathbf{M}_{O}} \cdot \underline{\mathbf{n}} = (\underline{\mathbf{r}} \times \underline{\mathbf{F}}) \cdot \underline{\mathbf{n}}$$
$$M_{O\lambda} = M_{O\lambda} \mathbf{n} = (\mathbf{r} \times \mathbf{F} \cdot \mathbf{n}) \mathbf{n}$$

Equivalent Force-Couple Systems ... $\underline{\mathbf{R}} - \mathbf{M}_0$)

$$\frac{\mathbf{R} = \sum \mathbf{F}}{\mathbf{R}} ; \frac{\mathbf{M}_{o}}{\mathbf{M}_{o}} = \sum \mathbf{M}_{o} = \sum (\mathbf{r} \times \mathbf{F}) + \sum \mathbf{M}_{Couples}$$

$$\frac{\mathbf{R}}{\mathbf{R}} = (\sum F_{x})\hat{\imath} + (\sum F_{y})\hat{\jmath} + (\sum F_{z})\hat{k} = R_{x}\hat{\imath} + R_{y}\hat{\jmath} + R_{z}\hat{k}$$

$$R = \sqrt{R_{x}^{2} + R_{y}^{2} + R_{z}^{2}}$$

$$\sum \underline{\mathbf{M}_{o}} = \left[\sum (\mathbf{r} \times \mathbf{F})_{x}\right]\hat{\imath} + \left[\sum (\mathbf{r} \times \mathbf{F})_{y}\right]\hat{\jmath} + \left[\sum (\mathbf{r} \times \mathbf{F})_{z}\right]\hat{k}$$

$$= M_{0x}\hat{\imath} + M_{0y}\hat{\jmath} + M_{0z}\hat{k}$$

$$M_{o} = \sqrt{M_{0x}^{2} + M_{0y}^{2} + M_{0z}^{2}}$$

Chapt 3 Equilibrium

FBDs!

Pin	$A_{\rm x}, A_{ m y}$
Roller/Rocker; Slider	Normal force
Fixed/Built-In (wall)	$A_{\rm x}, A_{\rm y}, M_{\rm A}$
Smooth Surface	Normal force
Rough Surface	Normal force,
	Friction force
Cable;	Force in direction of
Axial-only member	cable

2D Equilibrium

$\underline{\mathbf{R}} = \sum \underline{\mathbf{F}} = 0 \quad \sum \mathbf{M}_{o} = \mathbf{0}$

Ι	II	III
$\sum F_x = 0$	$\sum F_n = 0$	$\sum M_A = 0$
$\sum F_{y} = 0$	$\sum M_A = 0$	$\sum M_B = 0$
$\sum M_A = 0$	$\sum M_B = 0$	$\sum M_C = 0$

3D Supports; Possible Reactions

neactions
$A_{\mathrm{x}}, A_{\mathrm{y}}, A_{\mathrm{z}}$
Normal force,
Lateral force
$A_{\mathrm{x}}, A_{\mathrm{y}}, A_{\mathrm{z}}$,
$M_{ m Ax},M_{ m Ay},M_{ m Az}$
$A_{\mathrm{x}}, A_{\mathrm{y}}, A_{\mathrm{z}}$,
$M_{ m Ay},M_{ m Az}$
$A_{ m y}, A_{ m z}$,
$M_{ m Ay},M_{ m Az}$
$A_{\mathrm{x}}, A_{\mathrm{y}}, A_{\mathrm{z}}$,
$B_{ m y}, B_{ m z}$
Normal force
Normal force
Friction force

3D Equilibrium

$\underline{\mathbf{R}} = \sum \underline{\mathbf{F}} = 0$	$\sum \underline{\mathbf{M}_A} = 0$
$\sum F_{x} = 0$	$\sum M_{Ax} = 0$
$\sum F_{\mathcal{Y}} = 0$	$\sum M_{Ay} = 0$
$\sum F_z = 0$	$\sum M_{Az} = 0$

Chapt 4 Structures FBDs!

Truss: An assembly of two-force members pinned together. All loads applied at joints.

Method of Joints (2D)

- 0. Solve reactions of entire truss (not always)
- 1. Isolate a joint with only two unknown forces acting on it.
- 2. Apply equilibrium to joint

$$\sum F_x = 0; \quad \sum F_y = 0$$

3. Repeat Steps 1 to 2 as needed.

Method of Sections (2D)

- 0. Solve reactions of entire truss (not always)
- Consider a section cut through truss members, exposing no more than three unknowns. Do not cut though joints.
- 2. Apply equilibrium to part of the truss to one side of the section. Select one of 3 sets of 2D equilibrium equations. Use a 4th equation to check.
- 3. Repeat Steps 1 to 2 as needed.

Frame/Machine: An assembly of members pinned together. At least one member is not a two-force member.

For Rigid-Collapsible Frames/Machines:

- Break system up into individual FBDs. Apply Newton's 3rd Law.
- 2. Apply equilibrium on each member, solving pin forces by possibly considering more than one member at a time.
- 3. Repeat Steps 1 to 2 as needed.
- *Hint*: look for the two-force member.

Hint2: the force inside a multi-force member is not generally in the direction of the member.

Chapt 5 Distributed Forces

Centroids of Lines, Areas, Volumes

$L = \int dL$	$\overline{x} = \frac{\int x_c dL}{L}$; $\overline{y} = \frac{\int y_c dL}{L}$; $\overline{z} = \frac{\int z_c dL}{L}$
$A = \int dA$	$\overline{x} = \frac{\int x_c dA}{A}$; $\overline{y} = \frac{\int y_c dA}{A}$; $\overline{z} = \frac{\int z_c dA}{A}$
$V = \int dV$	$\overline{x} = \frac{\int x_c dV}{V}$; $\overline{y} = \frac{\int y_c dV}{V}$; $\overline{z} = \frac{\int z_c dV}{V}$

Composite Areas and Bodies

$A = \sum A_i$	$\overline{x} = \frac{\sum \overline{x}_i A_i}{A}$; $\overline{y} = \frac{\sum \overline{y}_i A_i}{A}$; $\overline{z} = \frac{\sum \overline{z}_i A_i}{A}$
$V = \sum V_i$	$\overline{x} = \frac{\sum \overline{x}_i V_i}{V}$; $\overline{y} = \frac{\sum \overline{y}_i V_i}{V}$; $\overline{z} = \frac{\sum \overline{z}_i V_i}{V}$

Beams

Members that resist bending due to applied loads. Generally long bars with forces applied normal to the member's structural axis.

Distributed Loading, w(x)

Total Load	$F_{eq} = \int w(x) dx$
Location	$\overline{x} = \frac{\int x[w(x)dx]}{F_{eq}}$

Shear Force and Bending Moment Distributions

Consider lengths of beam cut at various *x*.

Number of cuts: 1 + number of times the load on the beam changes

- 0. FBD of entire beam, solve reactions
- 1. Cut beam at length x.
- 2. Apply equilibrium to segment of length *x*:

 $\sum F_y = 0$; $\sum M = 0$... solve V(x) and M(x)

3. Solve shear force V(x) and bending moment M(x) over the entire length of the beam.

$V = \frac{dM}{dx}$	$\Delta M = M_2 - M_1$ = area under the shear- force diagram from x_1 to x_2 , not including point couples
$w = -\frac{dV}{dx}$	$\Delta V = V_2 - V_1$ = negative of the area under the shear-force diagram from x_1 to x_2 , not including point forces

Shear Force and Bending Moment Diagrams

- 1. Plot shear force and bending moment diagrams (plot to-scale).
- 2. Label values at ends of beam, where V(x) and M(x) change form, and where V(x) and M(x) are maximum and minimum.

Cables

Parabolic Cable: w(x) = w = constant, $T_0 = \text{minimum tension}$ (at bottom of cable)

$$y = \frac{wx^2}{2T_0}$$
 $T_0 = \frac{wl_A^2}{2h_A}$; $T_0 = \frac{wl_B^2}{2h_B}$

$$T = \sqrt{T_0^2 + w^2 x^2} = w\sqrt{x^2 + (l_A^2/2h_A)^2}$$
$$T_{max} = w l_A \sqrt{1 + (l_A/2h_A)^2}$$

For $h_A/l_A < \frac{1}{2}$, length of cable from bottom of sag to $(x,y)=(l_A, h_A)$

$$s_A = l_A \left[1 + \frac{2}{3} \left(\frac{h_A}{l_A} \right)^2 - \frac{2}{5} \left(\frac{h_A}{l_A} \right)^4 + \cdots \right]$$

For symmetric parabolic cable, sag h, span L.

Maximum Tension	$T_{max} = \frac{wL}{2}\sqrt{1 + (L/4h)^2}$
Total Cable Length	$S = L \left[1 + \frac{8}{3} \left(\frac{h}{L} \right)^2 - \frac{32}{5} \left(\frac{h}{L} \right)^4 + \cdots \right]$

Updated: 7/19/2020