Ch. 2 Force Systems

Rectangular Components

Vector	$\underline{\mathbf{F}}=F_{x} \hat{\imath}+F_{y} \hat{\jmath}$
Vector components	$\underline{\mathbf{F}_{\mathbf{x}}}=F_{x} \hat{\imath} \quad ; \quad \mathbf{F}_{\mathbf{y}}=F_{y} \hat{\jmath}$
$\begin{aligned} & \hline \text { Scalar components } \\ & \text { (POS or NEG } \\ & \text { depending on } \\ & \text { direction wrt +axes) } \end{aligned}$	$\begin{aligned} & F_{x}=F \cos \theta_{x} \\ & F_{y}=F \sin \theta_{x}=F \cos \theta_{y} \end{aligned}$
Magnitude and Direction wrt $+x$	$F=\sqrt{{F_{x}}^{2}+{F_{y}}^{2}} ; \quad \theta=\tan ^{-1}\left(\frac{F_{y}}{F_{x}}\right)$
Projection of force onto any direction (defined by $\underline{\mathbf{n}}$. Component of \mathbf{F} in n-direction.	$\underline{\mathbf{n}}=$ unit vector in direction of interest $\begin{aligned} & \theta_{n}=\text { angle between } \underline{\mathbf{F}} \text { and } \underline{\mathbf{n}} . \\ & F_{n}=\underline{\mathbf{F}} \cdot \underline{\mathbf{n}}=F \cos \theta_{n}=F_{x} n_{x}+F_{y} n_{y} \end{aligned}$
Resultant force	$\begin{aligned} & \underline{\mathbf{R}}=\sum \underline{\mathbf{F}}=\left(\sum F_{x}\right) \hat{\imath}+\left(\sum F_{y}\right) \hat{\jmath} \\ & \underline{\mathbf{R}}=R_{x} \hat{\imath}+R_{y} \hat{\jmath} \end{aligned}$

Moment about a Point O

Position vector: Pt O to LOA of \mathbf{F}	$\underline{\mathbf{r}}=r_{x} \hat{\imath}+r_{y} \hat{\jmath}$
Vector	$\mathbf{M}_{\boldsymbol{O}}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}$
$\begin{aligned} & \text { Scalar } \\ & (+\mathrm{CCW} ; \quad \text { CW }) \end{aligned}$	$\begin{aligned} & \overline{M_{O}}=r F \sin \alpha=\left(r_{x} F_{y}-r_{y} F_{x}\right) \\ & \alpha=\text { angle from } \underline{\underline{r}} \text { to } \underline{\underline{F}} \end{aligned}$
Scalar Magnitude	$\begin{aligned} & M_{O}=F d \\ & d=\text { perpendicular distance } \end{aligned}$
Varignon's Thm: If all forces concurrent at a point (e.g., Pt.O)	$\underline{\mathbf{M}_{O}}=\sum(\underline{\mathbf{r}} \times \underline{\mathbf{F}})=\underline{\mathbf{r}} \times \sum \underline{\mathbf{F}}=\underline{\mathbf{r}} \times \underline{\mathbf{R}}$
Couple: two equal and opp. forces	Magnitude: $\quad M=F d$ (CW/CCW) Vector: $\underline{\underline{\mathbf{M}}}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}$

Resultants (Force-Couple System ... $\underline{\mathbf{R}}-\underline{\mathbf{M}_{\boldsymbol{0}}}$)

Resultant force	$\begin{aligned} & \underline{\mathbf{R}}=\sum \sum_{\mathbf{F}}^{\mathbf{F}}=\left(\sum F_{x}\right) \hat{\imath}+\left(\sum F_{y}\right) \hat{\jmath} \\ & \underline{\mathbf{R}}=R_{x} \hat{\imath}+R_{y} \hat{\jmath} \end{aligned}$
	$R_{x}=\sum F_{x} ; R_{y}=\sum F_{y}$
	$R=\sqrt{R_{x}{ }^{2}+R_{y}{ }^{2}}$
	$\theta_{R}=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)=\tan ^{-1}\left(\frac{\sum F_{y}}{\sum F_{x}}\right)$
Net moment	$\begin{aligned} & \frac{\mathbf{M}_{o}}{M_{O}}=\sum \underline{\mathbf{M}_{o}}=\sum(\underline{\mathbf{r}} \times \underline{\mathbf{F}})+\sum \underline{\mathbf{M}_{\text {Couple }}} \end{aligned}$
Moving force away from Pt. O	$\begin{aligned} & \mathbf{\mathbf { R }}=\sum \hat{\mathbf{F}} \\ & M_{O}=\sum F d=D R=x R_{y}-y R_{x} \\ & D=\text { perpendicular distance to } \underline{\mathbf{R}} \\ & x \hat{\imath}+y \hat{\jmath} \ldots \text { from Pt } O \text { to LOA of } \underline{\mathbf{R}} \end{aligned}$

3D Force Systems

Vector	$\mathbf{F}=F_{x} \hat{\imath}+F_{y} \hat{\jmath}+F_{z} \hat{k}$ $=F\left[\left(\cos \theta_{x}\right) \hat{\imath}+\left(\cos \theta_{y}\right) \hat{\jmath}+\left(\cos \theta_{z}\right) \hat{k}\right]$
Scalar	$F_{x}=F \cos \theta_{x} ; \quad F_{y}=F \cos \theta_{y}$
\quad Components	$F_{z}=F \cos \theta_{z}$
Magnitude	$F=\sqrt{F_{x}{ }^{2}+F_{y}{ }^{2}+F_{z}{ }^{2}}$

Mag and Dir.	$\underline{\mathbf{F}}=F \underline{\mathbf{n}_{F}}$
\mathbf{F} Line of Action of \mathbf{F}	$\underline{\mathbf{n}}_{F}=\frac{\overrightarrow{A B}}{A B}=\frac{\left(x_{B}-x_{A}\right) \hat{+}+\left(y_{B}-y_{A}\right) \hat{\jmath}+\left(z_{B}-z_{A}\right) \hat{k}}{\sqrt{\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}+\left(z_{B}-z_{A}\right)^{2}}}$
from Pt A to	$=\left(\cos \theta_{x}\right) \hat{\imath}+\left(\cos \theta_{y}\right) \hat{\jmath}+\left(\cos \theta_{z}\right) \hat{k}$
Pt B	
Angle of force	$\phi=$ angle above $x-y$ plane
above plane	$\theta=$ angle in $x-y$ plane from x-axis
Component of	Component in plane: $F_{x y}=F \cos \phi$
force in	Normal plane: $\quad F_{z}=F \sin \phi$
plane	
(here $x-y$	$F_{x}=F_{x y} \cos \theta=F \cos \phi \cos \theta$
plane)	$F_{y}=F_{x y} \sin \theta=F \cos \phi \sin \theta$

Dot Product $\alpha=$ angle between vectors

$$
\begin{aligned}
& \underline{\mathbf{P}} \cdot \underline{\mathbf{Q}}=P Q \cos \alpha=P_{x} Q_{x}+P_{y} Q_{y}+P_{z} Q_{z} \\
& \cos \alpha=\frac{\mathbf{P} \cdot \underline{\mathbf{Q}}}{P Q}
\end{aligned}
$$

Projection of $\underline{\mathbf{F}}$ onto direction of unit vector $\underline{\mathbf{n}}$:
$\underline{\mathbf{F}}=F_{x} \hat{\imath}+F_{y} \hat{\jmath}+F_{z} \hat{k}=F\left[\left(\cos \theta_{x}\right) \hat{\imath}+\left(\cos \theta_{y}\right) \hat{\jmath}+\right.$
$\left.\left(\cos \theta_{z}\right) \hat{k}\right]$
$\underline{\mathbf{n}}=n_{x} \hat{\imath}+n_{y} \hat{\jmath}+n_{z} \hat{k}$
$\underline{\mathbf{n}}=\left[\left(\cos \theta_{n x}\right) \hat{\imath}+\left(\cos \theta_{n y}\right) \hat{\jmath}+\left(\cos \theta_{n z}\right) \hat{k}\right]$
$F_{n}=\underline{\mathbf{F}} \cdot \underline{\mathbf{n}}=F_{x} n_{x}+F_{y} n_{y}+F_{z} n_{z}$
$F_{n}=\underline{\mathbf{F}} \cdot \underline{\mathbf{n}}=F\left[\left(\cos \theta_{x}\right)\left(\cos \theta_{n x}\right)+\left(\cos \theta_{y}\right)\left(\cos \theta_{n y}\right)\right.$
$\left.+\left(\cos \theta_{z}\right)\left(\cos \theta_{n z}\right)\right]$
$\cos \alpha=\frac{\mathbf{F} \cdot \underline{\mathbf{n}}}{F}$

Moment and Couple

$$
\begin{aligned}
& \underline{\mathbf{r}}=r_{x} \hat{\imath}+r_{y} \hat{\jmath}+r_{z} \hat{k} ; \\
& \underline{\mathbf{F}}=F_{x} \hat{\imath}+F_{y} \hat{\jmath}+F_{z} \hat{k} \\
& \underline{\mathbf{M}_{\boldsymbol{O}}}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}=\left|\begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right| \\
& \underline{\mathbf{M}_{O}}=\left(r_{y} F_{z}-r_{z} F_{y}\right) \hat{\imath}+\left(r_{z} F_{x}-r_{x} F_{z}\right) \hat{\jmath}+\left(r_{x} F_{y}-r_{y} F_{x}\right) \hat{k} \\
& \underline{\mathbf{M}_{O}}=M_{O x} \hat{\imath}+M_{O y} \hat{\jmath}+M_{O z} \hat{k} \\
& \underline{M_{O}}=\sqrt{M_{O x}{ }^{2}+M_{O y}{ }^{2}+M_{O z}{ }^{2}}
\end{aligned}
$$

In any direction, λ, projection of $\underline{\underline{\mathbf{M}}} \boldsymbol{o}$ onto λ-axis, where $\underline{\mathbf{n}}$ is unit vector in λ-direction:

$$
\begin{aligned}
& M_{O \lambda}=\underline{\mathbf{M}_{O}} \cdot \underline{\mathbf{n}}=(\underline{\mathbf{r}} \times \underline{\mathbf{F}}) \cdot \underline{\mathbf{n}} \\
& \underline{\boldsymbol{M}_{O \lambda}}=M_{O \lambda} \underline{\mathbf{n}}=(\underline{\mathbf{r}} \times \underline{\mathbf{F}} \cdot \underline{\mathbf{n}}) \underline{\mathbf{n}}
\end{aligned}
$$

Equivalent Force-Couple Systems ... $\underline{R}-\underline{M_{O}}$)

$$
\begin{aligned}
& \underline{\mathbf{R}}=\sum \underline{\mathbf{F}} ; \underline{\mathbf{M}_{o}}=\sum \underline{\mathbf{M}_{o}}=\sum(\underline{\mathbf{r}} \times \underline{\mathbf{F}})+\sum \underline{\mathbf{M}_{\text {Couples }}} \\
& \underline{\mathbf{R}}=\left(\sum F_{x}\right) \hat{\imath}+\left(\sum F_{y}\right) \hat{\jmath}+\left(\sum F_{z}\right) \hat{k}=R_{x} \hat{\imath}+R_{y} \hat{\jmath}+R_{z} \hat{k} \\
& R=\sqrt{R_{x}{ }^{2}+R_{y}{ }^{2}+R_{z}{ }^{2}} \\
& \sum \underline{\mathbf{M}_{O}}=\left[\sum(\underline{\mathbf{r}} \times \underline{\mathbf{F}})_{x}\right] \hat{\imath}+\left[\sum(\underline{\mathbf{r}} \times \underline{\mathbf{F}})_{y}\right] \hat{\jmath}+\left[\sum(\underline{\mathbf{r}} \times \underline{\mathbf{F}})_{z}\right] \hat{k} \\
& \quad=M_{O x} \hat{\imath}+M_{O y} \hat{\jmath}+M_{O z} \hat{k}
\end{aligned} \quad \begin{aligned}
& M_{O}=\sqrt{M_{O x}{ }^{2}+M_{O y}{ }^{2}+{M_{O z}}^{2}}
\end{aligned}
$$

Chapt 3 Equilibrium

FBDs!

2D Supports; Possible Reactions ($x-y$ plane)	
Pin	$A_{\mathrm{x}}, A_{\mathrm{y}}$
Roller/Rocker; Slider	Normal force
Fixed/Built-In (wall)	$A_{\mathrm{x}}, A_{\mathrm{y}}, M_{\mathrm{A}}$
Smooth Surface	Normal force
Rough Surface	Normal force, Friction force
Cable; Axial-only member	Force in direction of cable

2D Equilibrium

$\underline{\mathbf{R}}=\sum \underline{\mathbf{F}}=0 \sum \underline{\mathbf{M}_{\boldsymbol{o}}}=\mathbf{0}$		
\mathbf{I}	II	III
$\sum F_{x}=0$	$\sum F_{n}=0$	$\sum \mathrm{M}_{A}=0$
$\sum F_{y}=0$	$\sum \mathrm{M}_{A}=0$	$\sum \mathrm{M}_{B}=0$
$\sum \mathrm{M}_{A}=0$	$\sum \mathrm{M}_{B}=0$	$\sum \mathrm{M}_{C}=0$

3D Supports; Possible Reactions

Ball-Socket	$A_{\mathrm{x}}, A_{\mathrm{y}}, A_{\mathrm{z}}$
Roller with lateral constraint	Normal force, Lateral force
Fixed/Built-In (wall)	$A_{\mathrm{x}}, A_{\mathrm{y}}, A_{\mathrm{z}}$,
	$M_{\mathrm{Ax}}, M_{\mathrm{Ay}}, M_{\mathrm{Az}}$
Thrust Bearing, shaft	$A_{\mathrm{x}}, A_{\mathrm{y}}, A_{\mathrm{z}}$,
along x-axis	$M_{\mathrm{Ay}}, M_{\mathrm{Az}}$
Simple Bearing, shaft	$A_{\mathrm{y}}, A_{\mathrm{z}}$,
along x-axis	$M_{\mathrm{Ay}}, M_{\mathrm{Az}}$
Two Bearings, A, B,	$A_{\mathrm{x}}, A_{\mathrm{y}}, A_{\mathrm{z}}$,
shaft along x-axis,	$B_{\mathrm{y}}, B_{\mathrm{z}}$
A is thrust, B is simple	
Smooth Surface	Normal force
Rough Surface	Normal force
	Friction force

3D Equilibrium

$\underline{\mathbf{R}}=\sum \mathbf{F}=0$	$\sum \underline{\mathbf{M}_{A}}=\mathbf{0}$
$\sum F_{x}=0$	$\sum \mathrm{M}_{A x}=0$
$\sum F_{y}=0$	$\sum \mathrm{M}_{A y}=0$
$\sum F_{z}=0$	$\sum \mathrm{M}_{A z}=0$

Chapt 4 Structures
 FBDs!

Truss: An assembly of two-force members pinned together. All loads applied at joints.

Method of Joints (2D)

0. Solve reactions of entire truss (not always)
1. Isolate a joint with only two unknown forces acting on it.
2. Apply equilibrium to joint

$$
\sum F_{x}=0 ; \quad \sum F_{y}=0
$$

3. Repeat Steps 1 to 2 as needed.

Method of Sections (2D)

0 . Solve reactions of entire truss (not always)

1. Consider a section cut through truss members, exposing no more than three unknowns. Do not cut though joints.
2. Apply equilibrium to part of the truss to one side of the section. Select one of 3 sets of 2D equilibrium equations. Use a $4^{\text {th }}$ equation to check.
3. Repeat Steps 1 to 2 as needed.

Frame/Machine: An assembly of members pinned together. At least one member is not a twoforce member.

For Rigid-Collapsible Frames/Machines:

1. Break system up into individual FBDs. Apply Newton's $3^{\text {rd }}$ Law.
2. Apply equilibrium on each member, solving pin forces by possibly considering more than one member at a time.
3. Repeat Steps 1 to 2 as needed.

Hint: look for the two-force member.
Hint2: the force inside a multi-force member is not generally in the direction of the member.

Chapt 5 Distributed Forces

Centroids of Lines, Areas, Volumes

$L=\int d L$	$\bar{x}=\frac{\int x_{c} d L}{L} ; \bar{y}=\frac{\int y_{c} d L}{L} ; \bar{z}=\frac{\int z_{c} d L}{L}$
$A=\int d A$	$\bar{x}=\frac{\int x_{c} d A}{A} ; \bar{y}=\frac{\int y_{c} d A}{A} ; \bar{z}=\frac{\int z_{c} d A}{A}$
$V=\int d V$	$\bar{x}=\frac{\int x_{c} d V}{V} ; \bar{y}=\frac{\int y_{c} d V}{V} ; \bar{z}=\frac{\int z_{c} d V}{V}$

Composite Areas and Bodies

$A=\sum A_{i}$	$\bar{x}=\frac{\sum \bar{x}_{i} A_{i}}{A} ; \bar{y}=\frac{\sum \bar{y}_{i} A_{i}}{A} ; \bar{z}=\frac{\sum \bar{z}_{i} A_{i}}{A}$
$V=\sum V_{i}$	$\bar{x}=\frac{\sum \bar{x}_{i} V_{i}}{V} ; \bar{y}=\frac{\sum \bar{y}_{i} V_{i}}{V} ; \bar{z}=\frac{\sum \bar{z}_{i} V_{i}}{V}$

Beams

Members that resist bending due to applied loads. Generally long bars with forces applied normal to the member's structural axis.

Distributed Loading, $w(x)$

Total Load	$F_{e q}=\int w(x) d x$
Location	$\bar{x}=\frac{\int x[w(x) d x]}{F_{e q}}$

Shear Force and Bending Moment Distributions

Consider lengths of beam cut at various x.
Number of cuts: $1+$ number of times the load on the beam changes
0 . FBD of entire beam, solve reactions

1. Cut beam at length x.
2. Apply equilibrium to segment of length x :

$$
\sum F_{y}=0 ; \sum M=0 \quad \ldots \text { solve } V(x) \text { and } M(x)
$$

3. Solve shear force $V(x)$ and bending moment $M(x)$ over the entire length of the beam.

$V=\frac{d M}{d x}$	$\Delta M=M_{2}-M_{1}=$ area under the shear- force diagram from x_{1} to x_{2}, not including point couples
$w=-\frac{d V}{d x}$	$\Delta V=V_{2}-V_{1}=$ negative of the area under the shear-force diagram from x_{1} to x_{2}, not including point forces

Shear Force and Bending Moment Diagrams

1. Plot shear force and bending moment diagrams (plot to-scale).
2. Label values at ends of beam, where $V(x)$ and $M(x)$ change form, and where $V(x)$ and $M(x)$ are maximum and minimum.

Cables

Parabolic Cable: $w(x)=w=$ constant, $T_{0}=$ minimum tension (at bottom of cable)

$$
\begin{array}{l|l}
\hline y=\frac{w x^{2}}{2 T_{0}} & T_{0}=\frac{w l_{A}^{2}}{2 h_{A}} ; T_{0}=\frac{w l_{B}^{2}}{2 h_{B}} \\
\hline
\end{array}
$$

$$
\begin{aligned}
& T=\sqrt{T_{0}^{2}+w^{2} x^{2}}=w \sqrt{x^{2}+\left(l_{A}^{2} / 2 h_{A}\right)^{2}} \\
& T_{\max }=w l_{A} \sqrt{1+\left(l_{A} / 2 h_{A}\right)^{2}}
\end{aligned}
$$

For $h_{A} / l_{A}<1 / 2$, length of cable from bottom of sag to $(x, y)=\left(l_{A}, h_{A}\right)$

$$
s_{A}=l_{A}\left[1+\frac{2}{3}\left(\frac{h_{A}}{l_{A}}\right)^{2}-\frac{2}{5}\left(\frac{h_{A}}{l_{A}}\right)^{4}+\cdots\right]
$$

For symmetric parabolic cable, sag h, span L.

Maximum Tension	$T_{\max }=\frac{w L}{2} \sqrt{1+(L / 4 h)^{2}}$
Total Cable Length	$S=L\left[1+\frac{8}{3}\left(\frac{h}{L}\right)^{2}-\frac{32}{5}\left(\frac{h}{L}\right)^{4}+\cdots\right]$

