ENGR152 - ASSIGNMENTS - FALL 2020

Meriam and Kraige's Engineering Mechanics: STATICS, 8th ed.

You do not need to buy the book. The MESA Center has a classroom set to loan to the students in the class. You should be able to pick a copy up at the MESA Center the first week of August (details to be announced) along with a pack of engineering paper and decimal ruler (tenths of an inch). While earlier editions of the text may be used for study, problems will come from the 8th Ed.

The 8th edition is also on reserve in the MESA Center, the STEM Center and the AHC Library Reserve.

CAUTION: Problems SUBJECT TO CHANGE

Submitting Assignments

For face-to-face classes:

- Do your homework (HW) on engineering paper (you will get a pack of 200 sheets at the start of the term). Follow the guidelines for HW in the syllabus.
- Staple each assignment as a separate packet.
- Turn in your HW in class or in the HW Box in M-208, depending on instructions, by the due date.

For ERT classes (Fall 2020, until further notice):

- Do your homework (HW) on engineering paper (you will get a pack of 200 sheets at the start of the term). Follow the guidelines for HW in the syllabus.
- Scan your pages for the assignment and collate them into a single PDF.
- Upload the PDF into Canvas by the due date listed in Canvas.

Here are a few smartphone apps that let you scan documents and convert them into PDFs:

- Adobe Scan
- CamScanner

Solutions

- Numerical answers to all $8^{\text {th }}$ ed. problems are in the back of the text.
- Brief solutions will be posted/distributed after the assignment has been turned in.

Homework Assignments begin on Page 2

ENGR152 - ASSIGNMENTS - FALL 2020

CAUTION: Problems SUBJECT TO CHANGE - Double-check the assignment on Canvas.

No.	Date Assigned/ Updated	[Chapter/Section]	Assignment 8th Edition	Due
1	07/04/20	[1/all]	$2^{*}, 7^{*}, 9$ (problems available as PDF on Canvas and website) Notes: \#2: For the "Graphical solution" means use trigonometric and/or geometric methods (laws of sines, cosines, etc.); OR draw vectors to scale and measure lengths and angles. "Algebraic" means use vector algebra (i-hat, jhat, etc.) \#7: Do not calculate your own weight. \#9: See Table D/2 (pg.486).	Mon. 8/24 11:59pm Canvas
2	07/04/20	[2/3] Forces [2/4] Moments	$\begin{array}{r} 4,14,16,26 ; \\ 31,38,50,56 \\ \hline \end{array}$	
3	07/04/20	[2/5] Couples [2/6] Resultants	$\begin{aligned} & \mathbf{6 4 ,} \mathbf{6 7 , 7 0} \\ & 86,89,91 \\ & \hline \end{aligned}$	
4	07/04/20	[2/7] 3d Forces [2/8] 3d Moments [2/9] Resultants	```105, 106, 112, 113; 130, 136*, 138; 155, 164 Notes: \#105 give scalar components and not vector components. \#136: In back-of-book solution, \(z\)-component of \(\mathbf{M}_{\mathbf{o}}\) should be -714, not -14. \#105 \& \#130 are linked; \#112 \& \#138 are linked.```	
5	07/04/20	[3/1 to $3 / 3$] Equilibrium	4, 12, 14, 24, 37, 44, 54, 57	
6	07/04/20	[3/4] 3d Equil.	63, 76, 83, 88	
7	07/04/20	[4/3] Trusses: MOJ [4/4] Trusses: MOS	8, 10, 17, 23 - Use Method of Joints: 38, 43, 45, 47 - Use Method of Sections:	
8	07/04/20	[4/5] 3-d Truss [4/6]: Frames; Machines	$\mathbf{6 0 , 6 7}$ Do not turn in 3d-truss probs - but do them. FRAMES/MACHINES $80,97,104,108,117,124$	

Homework Assignments \#9-14 are on Page 3

No.	Date Assigned/ Updated	[Chapter/Section]	Assignment 8th Edition	Due
9	07/04/20	[5/3] Center of Mass, Integration	$9,11,17,20$ (use Integration for all probs. in 5/3)	
10	07/04/20	[5/4] Composite Bodies [5/6] Beams, External	$\begin{gathered} \hline 52,59,65,72 ; \\ 103,107,110,117 \end{gathered}$	
11	07/04/20	[5/7] Beams, Internal	130, 133, 134, 140, 142, 150	
12	07/04/20	[5/8] Cables	157, 159, 162, 165	KEEP
13	07/04/20	[A/2] Moment of Inertia [A/3] Moment of Inertia	14, 28 - Use integration; $35,41,49$ - Use composite areas	KEEP
14	07/04/20	[6/3] Friction [6/8,9] Belts, Rolling	$\begin{aligned} & \text { 2, 18, 22, 24, } 33 \\ & 99,105,106 \end{aligned}$	

