Cross product of Two Vectors (Vector Algebra Method)

The cross product of two vectors is often used in engineering. In statics, the moment of force $\underline{\mathbf{F}}$ (a vector) about Point O is determined by taking the cross product.
In three dimensions, consider vector $\underline{\mathbf{r}}=r_{x} \hat{\imath}+r_{y} \hat{\jmath}+r_{z} \hat{k}$, where $\underline{\mathbf{r}}$ is a position vector from Point O to any point on the line of action of vector force $\underline{\mathbf{F}}=F_{x} \hat{\imath}+F_{y} \hat{\jmath}+F_{z} \hat{k}$ (Point A at the tail of $\underline{\mathbf{F}}$ is often a convenient point (Fig. 2-22)). Note that the scalar components may be positive or negative.

The moment $\underline{\mathbf{M}_{\boldsymbol{O}}}$ about Point O is given by the cross product:

$$
\underline{\mathbf{M}_{O}}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}
$$

The order of the vectors in the cross product is important, and for the moment of a force, it is always " $\underline{\mathbf{r}}$ cross $\underline{F}^{\prime \prime}$. The result is a third vector, perpendicular to the plane formed by $\underline{\mathbf{r}}$ and $\underline{\mathbf{F}}$.

The cross product can be founding using vector algebra:

$$
\begin{aligned}
\underline{\mathbf{M}_{\boldsymbol{O}}}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}= & \left(r_{x} \hat{\imath}+r_{y} \hat{\jmath}+r_{z} \hat{k}\right) \times\left(F_{x} \hat{\imath}+F_{y} \hat{\jmath}+F_{z} \hat{k}\right) \\
= & r_{x} F_{x}(\hat{\imath} \times \hat{\imath})+r_{x} F_{y}(\hat{\imath} \times \hat{\jmath})+r_{x} F_{z}(\hat{\imath} \times \hat{k}) \\
& +r_{y} F_{x}(\hat{\jmath} \times \hat{\imath})+r_{y} F_{y}(\hat{\jmath} \times \hat{\jmath})+r_{y} F_{z}(\hat{\jmath} \times \hat{k}) \\
& +r_{z} F_{x}(\hat{k} \times \hat{\imath})+r_{z} F_{y}(\hat{k} \times \hat{\jmath})+r_{z} F_{z}(\hat{k} \times \hat{k})
\end{aligned}
$$

Fig. 2-22, Meriam and Kraige, Engineering Mechanics: Statics, 7e.

Recall:

$$
\begin{aligned}
& \hat{\imath} \times \hat{\jmath}=+\hat{k}, \hat{\jmath} \times \hat{k}=+\hat{\imath}, \hat{k} \times \hat{\imath}=+\hat{\jmath} \\
& \hat{\jmath} \times \hat{\imath}=-\hat{k}, \hat{k} \times \hat{\jmath}=-\hat{\imath}, \hat{\imath} \times \hat{k}=-\hat{\jmath} \\
& \hat{\imath} \times \hat{\imath}=0, \hat{\jmath} \times \hat{\jmath}=0, \hat{k} \times \hat{k}=0
\end{aligned}
$$

So:

$$
\begin{aligned}
\underline{\mathbf{M}_{o}} & =r_{x} F_{x}(0)+r_{x} F_{y}(\hat{k})+r_{x} F_{z}(-\hat{\jmath})+r_{y} F_{x}(-\hat{k})+r_{y} F_{y}(0)+r_{y} F_{z}(\hat{\imath})+r_{z} F_{x}(\hat{\jmath})+r_{z} F_{y}(-\hat{\imath})+r_{z} F_{z}(0) \\
& =\underbrace{\left(r_{y} F_{z}-r_{z} F_{y}\right)}_{M_{O, x}}(\hat{\imath})+\underbrace{\left(r_{z} F_{x}-r_{x} F_{z}\right)}_{M_{O, y}}(\hat{\jmath})+\underbrace{\left(r_{x} F_{y}-r_{y} F_{x}\right)}_{M_{O, z}}(\hat{k})=M_{O, x} \hat{\imath}+M_{O, y} \hat{\jmath}+M_{O, z} \hat{k}
\end{aligned}
$$

The scalar components of the moments are:

$$
\begin{array}{ll}
M_{O, x}=r_{y} F_{z}-r_{z} F_{y} & \text { the moment about Point } O \text { about the } x \text {-axis. } \\
M_{O, y}=r_{z} F_{x}-r_{x} F_{z} & \text { the moment about Point } O \text { about the } y \text {-axis } \\
M_{O, z}=r_{x} F_{y}-r_{y} F_{x} & \text { the moment about Point } O \text { about the } z \text {-axis. }
\end{array}
$$

These equations may seem hard to remember, but notice the pattern: (1) the moment about a specific axis is made up the r - and F-components from the other directions (e.g., $M_{o, y}$ only has r_{x}, r_{z}, F_{x} and F_{z}); (2) r always proceeds F, and (3) if the product's subscripts are in alphabetical order $(x, y, z, x \ldots)$, the product has a positive sign; if not, the product has a negative sign, e.g., : $+r_{y} F_{z},+r_{z} F_{x}$ (z is at the end of the "alphabet", so the next letter is x), $-r_{z} F_{y},-r_{x} F_{z}$.

Alternatively, the cross product of vector $\underline{\mathbf{r}}$ with $\underline{\mathbf{F}}$ can be found by calculating the determinant of the following matrix:

$$
\left[\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right]
$$

where the directional unit vectors are in the first row, the scalar components (positive or negative) of $\underline{\mathbf{r}}$ are in the second row, and the scalar components of $\underline{\mathbf{F}}$ are in the third row.

$$
\underline{\mathbf{M}_{\boldsymbol{o}}}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}=\operatorname{det}\left[\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right]=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

To take the determinant, set up this matrix on the paper (or in your mind):

$$
\left[\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right]
$$

" + " signs are in positions where the Row + Column is even $(1,1),(1,3),(2,2),(3,3)$, etc.
"-" signs are in positions where the Row + Column is odd (1,2), (2,3), etc.
Now, consider the elements in Row 1 (the unit vectors). These will become the coefficients of smaller 2×2 matrices, with the first and third terms being positive, and the second being negative:

$$
\underline{\mathbf{M}_{\boldsymbol{O}}}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|=+(\hat{\imath})\left|\begin{array}{cc}
r_{y} & r_{z} \\
F_{y} & F_{z}
\end{array}\right| \underset{\substack{\text { this is } \\
\text { tegmative }}}{-(\hat{\jmath})}\left|\begin{array}{cc}
r_{x} & r_{z} \\
F_{x} & F_{z}
\end{array}\right|+(\hat{k})\left|\begin{array}{cc}
r_{x} & r_{y} \\
F_{x} & F_{y}
\end{array}\right|
$$

The determinant of each 2×2 may be found by adding the product of the downward diagonal terms and subtracting the product of the upward diagonal terms:

$$
\underline{\mathbf{M}_{\boldsymbol{O}}}=+(\hat{\imath})\left(r_{y} F_{z}-r_{z} F_{y}\right)-(\hat{\jmath})\left(r_{x} F_{z}-r_{z} F_{x}\right)+(\hat{k})\left(r_{x} F_{z}-r_{z} F_{x}\right)
$$

To keep all coefficients positive, the r- and F- terms of the $\hat{\jmath}$ coefficient are reversed:

$$
\underline{\mathbf{M}_{\boldsymbol{O}}}=\left(r_{y} F_{z}-r_{z} F_{y}\right)(\hat{\imath})+\left(r_{z} F_{x}-r_{x} F_{z}\right)(\hat{\jmath})+\left(r_{x} F_{z}-r_{z} F_{x}\right)(\hat{k})=M_{O, x} \hat{\imath}+M_{O, y} \hat{\jmath}+M_{O, z} \hat{k}
$$

The scalar components of the moments are:

$$
\begin{aligned}
M_{O, x} & =r_{y} F_{z}-r_{z} F_{y} \\
M_{O, y} & =r_{z} F_{x}-r_{x} F_{z} \\
M_{O, z} & =r_{x} F_{y}-r_{y} F_{x}
\end{aligned}
$$

Here is how the three 2×2 's and their coefficients were set up.

- Take the element in Row 1, Column 1 (1,1): " \bar{c} "; it will be multiplied by positive 1 , the sign in $(1,1)$ of the " $+/-$ " matrix. Cover all elements in Row 1 and all elements in Column 1, which leaves four elements uncovered ... a 2×2 matrix. The " $+(\hat{\imath})$ " is multiplied by this 2×2 matrix.

- Take the element in $(1,2)$: " $\bar{\jmath}$ "; it will be multiplied by negative 1 , the sign in $(1,2)$ of the "+/-" matrix. Cover all elements in Row 1 and all elements in Column 2, which leaves four elements uncovered ... a 2×2 matrix. The "-($\hat{\jmath})$ " is multiplied by this 2×2 matrix.

$$
\xlongequal{\substack{\hat{\imath}}}\left|\begin{array}{ll}
\hat{\jmath} & \hat{r} \\
r_{x} & y_{y} \\
F_{x} & r_{z} \\
F_{y} & F_{z}
\end{array}\right| \longrightarrow-(\hat{\jmath})\left|\begin{array}{ll}
r_{x} & r_{z} \\
F_{x} & F_{z}
\end{array}\right|
$$

- Take the element in $(1,3)$: " \hat{k} "; a positive will be placed in front, the sign in $(1,3)$ of the "+/-" matrix. Cover all elements in Row 1 and all elements in Column 3, which leaves four elements uncovered ... a 2×2 matrix. The " $+(\hat{k})$ " is multiplied by this 2×2 matrix.

$$
\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{i} \\
r_{x} & r_{y} & r \\
F_{x} & F_{y} & F_{\mid}
\end{array}\right| \longrightarrow+(\hat{k})\left|\begin{array}{cc}
r_{x} & r_{y} \\
F_{x} & F_{y}
\end{array}\right|
$$

Moment - Right-Hand Rule

The main point of this handout was to explain the cross product, with the specific application of the moment. The moment can also be determined using the right-hand rule.

The moment of force $\underline{\mathbf{F}}$ about Point A (Fig. 2-8(b)), is:

$$
\underline{\mathbf{M}_{\boldsymbol{A}}}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}
$$

where $\underline{\mathbf{r}}$ is the position vector from Point A to any point on the line of action of \underline{F}.

The value of the moment is:

$$
M_{A}=r F \sin \alpha
$$

where α is measured from the $\underline{\mathbf{r}}$ direction to the $\underline{\mathbf{F}}$-direction (a positive moment implies counterclockwise, a

Fig. 2-8 (b) and (c), Meriam and Kraige, Engineering Mechanics: Statics, 7e. negative moment clockwise).

The direction of $\underline{\mathbf{M}_{\boldsymbol{A}}}$ is perpendicular the plane formed by $\underline{\mathbf{r}}$ and $\underline{\mathbf{F}}$, and found using the right-hand rule:

1. Point the fingers of your right hand in the direction of $\underline{\mathbf{r}}$.
2. Close your right-hand fingers into vector \mathbf{F}.
3. The direction of your thumb is in the direction of $\underline{\mathbf{M}}$ (Fig. 2-8(c)). The direction your right fingers curl in is the direction of the action of the moment.

The moment vector is about the axis perpendicular to the plane that $\underline{\mathbf{r}}$ and $\underline{\mathbf{F}}$ both lie in.

Note that the magnitude of the moment can also be written:

$$
M_{A}=|r F \sin \alpha|=|F(r \sin \alpha)|=F d=|r(F \sin \alpha)|=r F_{\perp}
$$

where d is the shortest distance between Point A and the line of action of $\underline{\mathbf{F}}$ (the perpendicular distance, or moment arm), and F_{\perp} is the component of $\underline{\mathbf{F}}$ perpendicular to $\underline{\mathbf{r}}$. The magnitude of the moment can be thought of as the entire magnitude of F multiplied by the moment arm d, or the entire length r multiplied by the part of $\underline{\mathbf{F}}$ perpendicular to $\underline{\mathbf{r}}$.

