
Engr. 126: MATLAB
Question Set #3: Chapter 6 Questions - m- files
S20

Name

WORKING IN TEAMS of TWO (optional) – WORK TOGETHER ON EACH PROBLEM.

1. Write m-files – script files and user-defined functions – to satisfy the requirements below.

2. Demonstrate each m-file to your instructor.

3. Print out each completed m-file.

4. When you are finished with all questions and m-files, etc., turn them in as one packet.
(If you work in teams, one packet for the team is sufficient).

Minimum Requirements:

 Each m-file should have comment lines at the top with your name(s) and the date; e.g.: % Joe Student
(see model m-files in Workbook)

 Use comment lines to annotate the m-files – so that another person can figure out what each section and/or
line does; e.g.: % Plotting the polynomial, etc.

 Make sure that anyone who uses the m-file (besides a member of your team), knows what to do when the
m-file is run. Include input prompts and other instructions that guide the user; i.e., use the disp
command, etc., to print on-screen instructions. The exception is, of course, a function; it is assumed the
user knows a function exists (e.g., the cosine function).

 Any plot asked for below should be automatically generated by (within) the m-file. In general, the m-file
should create the plot, generate a title, and label the axes (including units). You may annotate the plot as
necessary with the text tools, either within the m-file or after the fact using the interface. When two or
more curves are graphed on the same plot, include a legend or use the text tools to directly label each plot.

Hint: Breathe. You can program. Plan out what the m-file will need to do – write a flow chart or algorithm –

before you type in the lines of MatLab code. Think about what input needs to be obtained from the user
(and when). What calculations must MatLab do? What decisions must be made depending on various
inputs and the results of various calculations? What output is necessary? Then, consider what MatLab
commands are needed to get MatLab to do what you want it to do – whether than is to follow a straight-
forward list of steps, or to interact with the user.

1. Script m-file: Grade

a. Write a script m-file (not a function) that gives the

letter grade for a student when any numerical
grade between 0 and 100 (inclusive) is entered.

The user will enter a grade, and the output should
look like:

The grade is a B.

or something to that effect. Use the grade scale at
right.

The grade scale is:

A 90 ≤ score ≤ 100

B 80 ≤ score < 90

C 70 ≤ score < 80

D 60 ≤ score < 70

F score < 60

b. Show your electronic file to the instructor for testing.

c. Print your completed m-file.

Engr126 Questions: Worksheet #2 Page 2 of 4

2. Script m-file: Quadratic Formula

The solution to the quadratic equation:

02 cbxax

is:

a

acbb
x

2

42

a. Create an m-file that will find the roots of a
quadratic equation, and print them out.

 Your m-file should:

 ask the user for the values of coefficients a, b
and c.

 check if a = 0, and solve for the single root.

 print out the roots, real and imaginary.

 Your file should also tell the user, in words, if:

 the roots are real and distinct (2 real roots).

 the roots are real and the same (1 double root).

 the roots are complex and distinct (2 complex
roots).

 there is only one root (e.g., when a = 0).

Bonus: Warn the user that there is no solution if a and b
are both zero.

b. Show your electronic file to the instructor for
testing.

c. Print the completed m-file. A complete m-file
includes your name and date in comment lines at
the top of the m-file. Do not forget to use
comment lines throughout the file to explain what
key parts of the m-file are supposed to do.

3. Script m-file: Plotting a Polynomial

a. Create an m-file to plot a polynomial of any degree.

 Ask the user to enter the coefficients of the
polynomial as a row vector. For example, if
the polynomial is:

273 3 xx

The user would enter:

 27,0,3,

Make sure the instructions to the user on how to
enter the polynomial coefficients are clear.

Hint: In the past, some students have used a loop
to enter the polynomial coefficients. This is not
using MatLab to the greatest advantage; entering
the coefficients as a row vector is doing exactly
the same thing.

 Ask the user to enter the endpoints of the
interval over which the polynomial is to be
plotted, e.g.: xmin and xmax.

 Use the polyval command to evaluate the
polynomial at 101 points (minimum) between
and including xmin and xmax. The user should
not have to enter the number of points (or
increments).

 Plot the polynomial. Make sure the plot has x-
and y-labels, and a title.

b. Show your electronic file to the instructor for
testing.

c. Print your completed m-file.

Engr126 Programming Page 3 of 4

4. Function: Height of a Projectile

a. Write a function called height that gives the

height of a ball at time t after it has been thrown
straight upward with initial velocity vo (vo > 0)
and with initial height ho = 0.

The equation for the height h (m) of the ball at t
seconds is:

250 gt.tvh o

where g = 9.81 m/s2, and vo is in m/s.

The input arguments of the function should be vo
and t. The first line of the m-file should be:

 function [h] = height(vo,t)

To find the height of a ball with vo = 20 m/s,
3 seconds after it is released, the user should type
into the Command Window:

 >>height(20,3)

b. Show your electronic file to the instructor for
testing.

c. Print your completed m-file.

Optional: write a function that includes g as a third
input.

5. Script m-file: Compare the Elements of Two Vectors of the Same Length

a. Write an m-file that will compare two vectors, u

and v, that are entered by the user. The vectors
should have the same length.

The m-file should:

 ask the user to enter the two vectors, u and v (of
any length).

 check that the vectors are the same length.

o If the vectors are not the same length, the m-
file should output that fact, and then end.

o If the two vectors are the same length, output:

- the length of each vector.

- the indices (element numbers) and values
of the elements of u that are greater
than the corresponding elements in v.
The output should be a 2D array, with
the index numbers in the first column,
and the values of u in the second
column.

Example: If u=[45, 23, 12] and v=[30,80,-
15], the output should look something like:

The length of the vectors is 3.

The indices and values of elements
in vector u that are greater than
those of vector v are:

1 45

3 12

b. Show your electronic file to the instructor for
testing.

c. Print your completed m-file.

Engr126 Programming Page 4 of 4

6. Script m-file: Resistors in Series and In-Parallel

When n electrical resistors are connected in series
(one after another), the equivalent resistance is:

n

k
kns RR...RRRR

1
321

When electric resistors are connected in parallel, the
equivalent resistance is:

1

1

1

321

11111

n

k kn
p RR

...
RRR

R

a. Write an m-file that computes and outputs
equivalent resistance for n resistors in series, and
for the same n resistors in parallel.

The m-file should:

 Ask the user to enter the values of the resistors.
You may either:

o have the user enter the number of
resistors, n, and then have the user
enter values for each resistor

individually. You will need to create a
loop structure to cycle through n
resistors.

OR, more efficiently:

o have the user enter the values for all
the resistors in a vector.

 calculate Rs and Rp . You may do this using loop
structures or using array operations (which is
more efficient?). If you use a loop structure,
do not forget to clear Rs and Rp at the start of
the m-file, or you may data from before.

 output Rs and Rp.

Make sure the user knows how to enter the
information by displaying instructions and input
prompts.

b. Show your electronic file to the instructor for testing.

c. Print your completed m-file.

7. Friction

The horizontal force F required to get a stationary
block on a rough horizontal surface to move is:

F=mg

where (Greek “mu”) is the coefficient of static
friction, m is mass, and g is the acceleration of gravity.

a. Write an m-file that computes and prints the force F
(in newtons, N).

The file should ask the user for:

 the mass of the object (in kg).

 the materials that the block and rough surface
are made of (to determine the coefficient of
friction) – see the table at right for the FOUR
options that you have.

Gravity g can be defined in the m-file
(g = 9.81 m/s2), or you can include g as a user
input.

Note that the user does not need to enter ; only
the material pair option (1, 2, 3 or 4).

Coefficient of Static Friction

Option # Materials

1 Rubber/Concrete: 0.70

2 Metal/Wood 0.40

3 Wood/Wood 0.35

4 Metal/Metal 0.20

Use the switch command for selecting (“mu”).

 Make sure the user knows how to use the program.

b. Show your electronic file to the instructor for testing.

c. Print your completed m-file.

End.

