Implement the following problem in a MATLAB script m-file.

SIMPL̄E SECOND-ORDERELECTRICAL SYSTEM

Figure RLC

Mechanical Second Order System

Figure 1: Left: Series RCL circuit. Right: Mass-spring-damper system. In this problem, at time $t=0$, voltage V is applied (i.e., a switch is closed), or force F is suddenly applied. These input signals are held constant "for all time."

The following discussion is based on Figure 1: a series RCL circuit, and a mass-spring-damper system. The two systems are mathematically equivalent to each other. We will assume that the system is underdamped... which means when subjected to a constant input, it will oscillate about its final configuration for some time before reaching equilibrium.

The system is initially at "rest" (current is zero; velocity is zero) and there is no energy stored (no current through the inductor and no voltage across the capacitor; no extension in the spring). A step input is suddenly applied at time $t=0$ (a switch is closed to apply DC voltage V_{s}; a constant force F is suddenly applied).

The response of an underdamped system to a step input is:

$$
x(t)=u_{0}\left[1-e^{-\zeta \omega_{n} t}\left(\cos \omega_{d} t-\gamma \sin \omega_{d} t\right)\right]
$$

Response: $\quad x(t)$ (capacitor voltage v_{c}, displacement $y(t)$)
Size of step: $\quad u_{0}$ (applied voltage V_{s}, or static displacement, F / k)
Undamped Natural Frequency: $\omega_{n}=\sqrt{\frac{1}{L C}}$ (electrical), $\omega_{n}=\sqrt{\frac{k}{m}}$ (mechanical)
Damping Ratio: $\quad \zeta=\frac{R}{2} \sqrt{\frac{\mathrm{C}}{\mathrm{L}}}$ (electrical), $\zeta=\frac{c}{2 \sqrt{k m}}$ (mechanical)
Damped Natural Frequency: $\quad \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$
Normalizing Constant:

$$
\gamma=\frac{\zeta}{1-\zeta^{2}}
$$

The equation for $x(t)$ is only valid for underdamped system. For an underdamped system: $\zeta<1$ The function $x(t)$ is a constant (the response's final value), plus an exponentially decaying sinusoid. The system oscillates about it final value; the oscillation eventually dies down.

For electrical systems with the components in series (Figure 1), u_{o} is the applied DC voltage V_{s}, while $x(t)$ is the voltage measured across the capacitor, $v_{c}(t)$, so:

$$
v_{c}(t)=V_{s}\left[1-e^{-\zeta \omega_{n} t}\left(\cos \omega_{d} t-\gamma \sin \omega_{d} t\right)\right]
$$

The final value of v_{c} it V_{s}. In your electrical engineering textbooks, you may have used the neper frequency, or damping factor $\alpha=\zeta \omega_{n}$ in the exponential term. A circuit is underdamped when $\alpha<\omega_{\mathrm{n}}$ or $\zeta<1$.

For mechanical systems (Figure 1), u_{o} is the static deflection of the spring, F / k, the applied force divided by the spring constant. $x(t)$ is the spring displacement, $y(t)$, so:

$$
y(t)=\frac{F}{k}\left[1-e^{-\zeta \omega_{n} t}\left(\cos \omega_{d} t-\gamma \sin \omega_{d} t\right)\right]
$$

The final value of y is F / k.

Systems that are overdamped ($\zeta>1$ or $\alpha>\omega_{n}$) or critically damped $\left(\zeta=1\right.$ or $\left.\alpha=\omega_{n}\right)$ have different responses, beyond the scope of this exercise.... Perhaps it is for a future assignment.

Component Equivalence

Impedance	Impedance
Force-Velocity	Voltage-Current
$=F(s) / V(s)$	$=V(s) / I(s)$

Damper

Mass

Resistor

Inductor

Figure 2. Component Equivalence.

EXERCISE:

Evaluate the system response for:

$$
\begin{array}{ll}
\omega_{n}=104 \mathrm{rad} / \mathrm{sec} & \zeta=0.3 \\
u_{0}=1 \text { unit (Volts or Force/stiffness) } & 0 \leq t \leq 0.4(\mathrm{sec})
\end{array} .
$$

Sample code is given below.

Physical question:

What improvements could be made to the system response? How would you change the parameters?

Programming Question:

Can you develop a code where you interactively input R, C and L (or c, k and m ?)
Can you use if-ifelse-end statements to create a program that can analyze underdamped, overdamped and critically damped systems for any (practical) combinations of R, C and L (or D, K and M).

```
%Engr 179 Allan Hancock College
%Sherman Wiggin
%Spring 2005
%Response of an underdamped second-order system to a step input
omegan=104 %The natural frequency
zeta = 0.3 %The dampening ratio
u0=1 %Input step size = unity
omegad=omegan*sqrt(1-zeta^2)%The natural damped frequency
gamm_a=zeta/sqrt(1-zeta^2)%non-dimensional parameter (simplifies
    notation)
t=linspace(0,0.4) %Creates 100 data points 0 to 0.4
x=u0* (1-exp (-zeta*omegan*t) . * (cos (omegad*t) -
    gamm_a*sin(omegad*t)))
plot(t,x)
```

