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Module #5 – Intro to Numerical Methods 
  -  Integration and Differentiation 
Engr 124 – Excel;  F20 

Name: 

 
Instructions: 
 Read the background sections (pp. 1-5). 
 Answer each problem on a different worksheet in one workbook (one Excel file). 
 Rename each worksheet with a one or two-word title that is descriptive of the problem. 
 Save an electronic copy of your file for reference. Name the file: Last_name_Mod_5.xlsx, e.g., 

Hancock_Mod_5.xlsx. 
 When you have completed all the problems in the module, upload the Excel file (workbook) to 

the Canvas web site for ENGR 124. 
  

Formatting 
 In the first Column (A), and in the first 3 rows of each worksheet, enter your Name (in A1), the Problem 

Title (A2) and the Date completed (A3). 
 Start all work below Row 4. 
 Make sure that you format each worksheet and use appropriate text (titles, prompts, etc.) so: 

(1) someone who opens the worksheet knows what the worksheet does, and  
(2) the user can easily use the sheet. 
(3) It looks good (background fill, borders, font). 

 
 
1.0  INTEGRATION 

The integral of a function is the area under the 
curve generated by the function (Figure 1). In 
calculus, the integral can be determined by dividing the 
area under the curve into infinitesimal areas, dA; e.g., 
vertical strips dx wide by f(x) tall, as in Figure 1. By 
adding – integrating – all of these infinitesimal areas, 
the total area under the curve is determined: 

  I dA f x dx    (1) 

In Calculus 2, you are exposed to several techniques that 
allow you to integrate analytically (i.e., using 
variables). In other words, the result of the indefinite 
integral is a function; this is called a closed formed 
solution. 

Perhaps because integration techniques can be complex, 
it is often forgotten that the integral is just the area 
of under the function. Thus, if you can visualize the 
function, you can estimate its area (integral). 

2.0  NUMERICAL INTEGRATION 

Many functions can be integrated analytically using the 
techniques of classical calculus. Other functions are 
either very difficult to evaluate analytically, or cannot be 
integrated analytically at all. The Gaussian function: 

  
2xf x e  (2) 

cannot be integrated by the basic techniques that you 
would learn in a standard calculus course. 

In many science and engineering applications, discrete 
(point-by-point) data cannot be described by a “nice” 
function. As you drive your car, if you plot speed v versus 
time t, the probability that your v(t) vs. t curve will be a 
recognizable smooth function (or even several functions 
pieced together) is very small. Real data is rarely 
described exactly by a nice function; integration is 
problematic. 

When f(x) cannot be integrated analytically (or it is 
difficult to integrate), numerical integration is 
employed. The approach is the same as that of calculus – 
in fact, it is the basis of calculus. The total area A is first 
divided into small areas, Ai  (i is a counting variable); the 
Ai’s are then summed (Figures 2–4).  

In analytical integration, the strips have infinitesimal 
width dx and finite height f(x), and thus infinitesimal 
area dA = f(x)dx. In numerical integration, the strips 
have finite width xi , and finite height f(xi). Thus, each 
area Ai = f(xi)xi is finite (Ai has a value). The value used 
for f(xi) for each Ai depends on the method used 
(discussed below). 

Figure 1  The integral of f(x), , is 

the area under the f(x)-curve. 
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2.1  LEFT-RECTANGULAR METHOD 

Consider Figure 2. The area under the f(x) curve has 
been broken up into n rectangles each xi wide; here 
n = 8. The width of each rectangle xi can vary, although 
here they are drawn with the same width. A set of (n+1) 
points on f(x) are defined by the left and right x-values of 
each area: (xo, yo), (x1, y1),…(xn, yn). The height of each 
rectangle is determined by the value of f(x) at the left 
side of the rectangle; thus the name of the method. 

The finite area under the first rectangle is: 

    1 1 1o o oA y x x y x     

The area under the second rectangle is: 

    2 1 2 1 1 2A y x x y x     

The area under the ith rectangle is: 

    1 1 1i i i i i iA y x x y x       

The total area under the curve, I (for integral), is 
approximated by: 

 i
n

i
i

n

i
i xyAI  




 1
1

1
 (3a) 

where 1i i ix x x    . Again, interval xi is generally not 

constant since data are not always equally spaced. 

When xi = x is constant (all the intervals are the 
same width), the area under the curve reduces to the 
special solution: 

 1 1 2 1
1

...
n

i o n
i

I x y x y y y y 


           

  (3b) 

Note that when f(x) is increasing, the rectangles do not 
fill the entire area under the curve; when f(x) is 
decreasing, the rectangles overestimate the area under 
the curve. Thus, the area calculated is only an 
approximation. 

The smaller x, the more accurate the solution will be 
(when x goes to infinitesimal dx, we have an “exact” 
solution). Making x smaller requires more calculations, 
but the computer can be set up to do all the work in a 
short amount of time; that’s what computers were made 
to do. 

When the interval xi is not constant, then you must do 
a little more work to set up the problem, but not much 
more, since the finite area is simply  

 1 1  i i i iA y x x , a calculation that can be easily 

automated. 

 

 
 
 

 
 

 

2.2  RIGHT-RECTANGULAR METHOD 

Consider Figure 3. The area under the f(x) curve has 
been broken up into n rectangles each xi wide; here 
n = 8. The width of each rectangle xi can vary. A set of 
(n+1) points on f(x) are defined by the left and right x-
values of each area: (xo, yo), (x1, y1),…(xn, yn). The height 
of each rectangle is determined by the value of f(x) at the 
right side of the rectangle; thus the name of the 
method. 

Here, the area under the first rectangle is: 

    1 1 1 1 1oA y x x y x     

The area under the second rectangle is: 

    2 2 2 1 2 2A y x x y x     

The area under the ith rectangle is: 

    1i i i i i iA y x x y x     

The total area under the curve is: 

 
1 1

n n
i i i

i i
I A y x

 
     (4a) 

where 1i i ix x x    . Again, the interval x is generally 

not constant.  

Figure 2  Left-Rectangular Method. 
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Figure 3  Right-Rectangular Method. 
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When x is constant, then: 

 
1 1 2 1

1
...

n

i n n
i

I x y x y y y y 


           (4b) 

Since some rectangles underestimate the area, and some 
overestimate it, the area calculated is thus only an 
approximation. The smaller x, the more accurate the 
solution will be.  

As in the previous method, when the interval xi is not 
constant, then you must do a little more work to set up 
the problem. However, the area is simply 

 1i i i iA y x x   , and the computer can do all the work. 

Note that for any set of data points, n−1 of the n Ai’s of 
the Left-Rectangular Method and of the Right-
Rectangular Method are the same. In general Ai+1 of the 
Left-Rectangular Method equals Ai of the Right-
Rectangular Method (e.g., A2,left=A1,right), as seen in 
Figures 2 and 3. The numerical difference of the two 
approximations is the difference in areas between A1 of 
the Left-Rectangular Method, and An of the Right-
Rectangular Method. 

௅ܫ ൌ ௢ݕݔ∆ ൅ ଵݕሾݔ∆ ൅ ଶݕ ൅ ⋯൅  ௡ିଵሿݕ

ோܫ ൌ ௡ݕݔ∆ ൅ ଵݕሾݔ∆ ൅ ଶݕ ൅⋯൅  ௡ିଵሿݕ

 

 

2.3  TRAPEZOIDAL METHOD 

Rectangles of finite width are not the best shape to 
estimate the area under a curve. A better estimate is 
made using trapezoids, as illustrated in Figure 4. The 
area of a trapezoid is its average height multiplied by its 
width. 

The area under the first trapezoid is: 

  1 1
1 1 12 2

o o
o

y y y y
A x x x

    
      
   

 

The area under the second trapezoid is: 

  1 2 1 2
2 2 1 22 2

y y y y
A x x x

    
      
   

 

The area under the ith trapezoid is: 

  1 1
12 2

i i i i
i i i i

y y y y
A x x x 


    

      
   

 

The total area under the curve is therefore: 

  1
1 1

1
2

n n
i i i i

i i
I A y y x

 
      (5a) 

where 1i i ix x x    . Again the interval x is generally 

not constant.  

When x is constant, Eq. (5a) reduces to: 

 

 

 
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


 





  
    

 


       

        

 

 

  (5b) 

The Trapezoidal Rule is just the average of the Left and 
Right-Rectangular Methods. 

 

 

 

 

 

2.4  SIMPSON’S RULE 

Even better estimates can be made by fitting a parabola 
(quadratic) curve through three adjacent data point. 
These points are ideally equally spaced, distance x 
apart. Without derivation, Simpson’s 1/3 Rule gives the 
area under such a curve: 

  1 1
1,3,5...

1
4

3

n
i i i

i
I y y y x 


     (6) 

Simpson’s 1/3 Rule, Simpson’s 3/8 Rule, and other 
advanced numerical integration techniques, will not be 
covered in this course. 

 

 

Figure 4  Trapezoidal Method. 
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3.0  DIFFERENTIATION 

The derivative of a function is the slope of the curve at 
a particular location x: 

    slope of  at 
df

f x f x x
dx

    (7) 

 

 

4.0  NUMERICAL DIFFERENTIATION –  

FORWARD DIFFERENCE METHOD, BACKWARD 

DIFFERENCE METHOD, AND CENTRAL 

DIFFERENCE METHOD 

For a set of data points, an approximation for the 
derivative at any point is the slope of a straight line 
between two points near the point of interest x: 

   f y
f x

x x
   
 

 (8) 

where y and x are the change in y- and x-values 
between the two points. The derivative is the ratio of the 
difference in the y-values to the difference in x-values 
between two points. 

Consider Figure 5. The data points on the curve are: (xo, 
yo), (x1, y1), (x2, y2), (x3, y3), (x4, y4), … (xn, yn).  

The slope at any point (xi, yi) can be approximated using 
the Forward Difference Method. This method gives 
the slope of the line between (xi, yi) and the next point 
“forward” (xi+1, yi+1). For example, the Forward 
Difference Method approximates the slope at x3 as:  

 
   

 
 4 3 4 3

3
4 3 4

y y y y
f x

x x x

 
  

 
 

Or, the slope at (xi, yi) can be approximated using the 
Backward Difference Method. This method gives the 
slope of the line between (xi, yi) and the next point 
“backward”(xi−1, yi−1). The slope at x3 is then: 

    
 

 3 2 3 2
3

3 2 3

y y y y
f x

x x x

 
  

 
 

The Central Difference Method gives a better 
approximation than the previous two methods 
(Figure 5). The Central Difference Method slope is the 
average of the slopes of the Forward and Backward 
Difference Methods. The slope at x3 is: 

 

     4 3 3 2
3

4 3

1
2

y y y y
f x

x x

  
   

   
 

  

 

 

Assuming xi is constant, then the Central Difference 
approximation for the slope at x3 is the average slope 
between (x2, y2) and (x4, y4): 

    4 2
3 2

y y
f x

x


 


 

Equations 9a 10a, and 11a give the general expressions 
for the slope xi for each method. The expressions in 
Equations 9b, 10b and 11b, are only for the case when x 
is constant. 

Forward Difference: 

    
 

1

1

i i
i

i i

y y
f x

x x





 


 (9a) 

    1i i
i

y y
f x

x
 

 


 (9b) 

Backward Difference: 

    
 

1

1

i i
i

i i

y y
f x

x x





 


 (10a) 

    1i i
i

y y
f x

x


 


 (10b) 

Central Difference 

      1 1

1

1
2

i i i i
i

i i

y y y y
f x

x x
 



  
   

   

 

(11a)

  

 

   1 1
2

i i
i

y y
f x

x
 

 


 (11b) 

As x decreases, the approximation for the slope 
improves. In the limit, x goes to dx. 

 

Figure 5  Estimating the slope at x3 using the 
three difference methods. A smaller x would 
increase the accuracy of the methods.  
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4.1  NUMERICAL DIFFERENTIATION –  

THE SECOND DERIVATIVE 

The second derivative is the rate of change of the slope. 
Using the slopes from the Forward and Backward 
Difference Methods (Equations 9 and 10), and taking x 
as constant, the second derivative at xi is approximated 
by: 

 

   

   

2

2

forward backward

1 1

i

i i

i i i i

d y f
f x

xdx
f x f x

x

y y x y y x

x
 

  


 



          



 

Simplifying: 

   1 1
2

2i i i
i

y y y
f x

x
  

 


 (12) 

Equation 12 is the Central Difference second 
derivative. 

Not surprisingly, there is a Forward Difference 
second derivative (just increase the subscripts by one): 

   2 1
2

2i i i
i

y y y
f x

x
  

 


 (13) 

and a Backward Difference second derivative (just 
decrease the subscripts by 1): 

   1 2
2

2i i i
i

y y y
f x

x
  

 


 (14) 

The Forward and Backward Difference second 
derivatives are not as accurate as the Central 
Difference second derivative. Use the Central 
Difference Method whenever possible.  

 

 

4.2  NUMERICAL DIFFERENTIATION –  

END POINTS 

Note that each differentiation method requires a data 
point before and/or after the point of interest. This 
requirement becomes a problem at the end points (xo and 
xn); there is no data point to the left of xo, and no data 
point to the right of xn . At the end points, only one of the 
three methods works. 

At the leftmost data point, the Forward Difference 
Methods must be used to estimate slopes and second 
derivatives. At the rightmost data point, the Backward 
Difference Methods must be used. 

For all interior points (non-end points, x1 to xn–1), the 
Central Difference Method should be used; it is the 
most accurate.  

As a consequence of having to use the Forward 
Difference Method at the leftmost point, and the 
Backward Difference that the rightmost point, the 
calculated derivatives (first and second) at the endpoints 
are generally less accurate than the derivatives 
calculated at the rest of the points. However, the two 
endpoints typically represent a very small fraction of the 
overall data. 

 

 

 

 

 



Excel: Module #5:  Integration and Differentiation  Page 6 of 7 

PROBLEMS for MODULE  5 
 
NOTE:  For hints on integrating with Excel, see the last two pages of this handout (two Excel worksheets). 
 
 
Problem 1  Integration 

Integrate 1/x from 1 to 2: 
2

1

dx
I

x
   

Integrating by hand, to 7 digits:          
2 2

1
1

ln ln 2 ln 1 ln 2 /1 0.6931472
dx

I x
x

       

(a) Use the Left-Rectangular Method and Excel to integrate numerically. 
To do so, break the distance from 1 to 2 into 10 intervals of equal width, i.e., 11 points (x0=1.0, x1=1.1, x2=1.2… 

x10=2.0), which are the sides of 10 rectangles. Note the first data point is (x0, y0). 
Calculate the area of each rectangle individually, Ai = yi−1x, and then add all 10 areas Ai together. Since this is 

the Left-Rectangular Method, the heights of the rectangles are: y0, y1, y2… y9. The first area is A1 = y0x. 

See Figure 6 for sample table set-up. 

(b) Use the Right-Rectangular Method and Excel to integrate numerically. 
Break the distance from 1 to 2 into 10 intervals of equal width (i.e., use 10 rectangles). 
Calculate the area of each rectangle individually, Ai = yix, and then add all 10 areas Ai together. The first area 
is A1 = y1x. 

(c) Use the Trapezoidal Method and Excel to integrate numerically. 
Break the distance from 1 to 2 into 10 intervals of equal width (i.e., use 10 rectangles). 
Calculate the area of each trapezoid individually, Ai , and then add all 10 areas together. The first area is A1 = 
[(y0+y1)x]/2. 

(d) Use Excel to calculate the percent error of each method with respect to the actual value of 0.6931472. Display the 
error below the calculation of each total area Ai . The formula for the percentage errors is:  

% 100%
approximation actual

error
actual


   

 A positive error indicates an overestimation; a negative error indicates a underestimation. 

A recommended format for Problem 1 is shown in Figure 6.  

 

Integration of 1/x from 1 to 2.    
Constant x = 0.1    
Data Point   Left Right Trapezoid 

i xi yi Ai, Ai, Ai, 
0 1.0 y0 calc.    
1 1.1 y1 calc. A1 calc. A1 calc. A1 calc. 
2 1.2 A2 calc. A2 calc. A2 calc. 
… 
 

… … … … … 

10 2.0 y10 calc. A10 calc. A10 calc. A10 calc. 
      
  Total Area: A calc. A calc. A calc. 
  Error: Error calc. Error calc. Error calc. 

 
Figure 6  Sample format for Problem 1. Excel should calculate the values indicated by the typeface 
Courier New (e.g., y0 calc., A1 calc.). 
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Problem 2  Integration – 20 intervals 
 

(a) Repeat Part (a) of Problem 1, but with 20 rectangles. In other words, use the Left-Rectangular Method, and 
break the distance from 1 to 2 into 20 intervals of equal width. 

(b) Calculate and display the error in the 20-interval Left-Rectangular result.  

(c) For the Left-Rectangular Method, compare the 20-interval solution (Prob. 2a) to the 10-interval solution (Prob. 1a). 
Indicate in the worksheet which solution is more accurate.  

 
 
Problem 3  Derivative and Integral 
 
Consider the following x-y data: 

 
x y 

0 0 
0.5 2.0 
1.1 5.0 
2.2 8.0 
2.8 10.0 
4.0 12.0 
5.6 17.0 
7.0 18.0 
8.4 20.0 

10.0 22.0 

Note: The spacing x for this problem is not constant. 
 
 
(a) Use the Forward Difference Method to approximate the slope at 

every point (except the last). 
 
(b) Use the Backward Difference Method to approximate the slope at 

every point (except the first) 
 
(c) Approximate the area under the curve formed by the x-y data using 

the Right-Rectangular Method. 
 
 

 
 
Problem 4  Integral and Derivative:  

Given the Velocity-Time Data, Determine the Distance Traveled and the Acceleration over the 
Entire Time-Interval. 

 
Note:  For help in setting up the worksheet for this problem, see the next page: “PROBLEM 3: Velocity vs. Time Data”  

The time-step t is constant. Use the data shown. 
 
Consider the velocity-time data in the spreadsheet on the following page. 
 
Set up an Excel worksheet to solve for the object’s acceleration and position with time. Then, plot (1) position 
vs. time, (2) velocity vs. time, and (3) acceleration vs. time. In particular: 
 

(a) Create an Excel worksheet like that on the following page. Enter the velocity vs. time data shown. 

(b) Acceleration is the derivative of velocity (the slope of the v-t curve). Calculate the acceleration of the object at all 
times using all three derivative methods – Forward, Backward, Central (note that at each endpoint, only one 
method can be used). 

(c) Change in position is the integral of velocity (the area under the v-t curve). Calculate the area under the v-t curve 
using the Trapezoidal Rule. If the object starts at x = 0, then its position at time t (location) is also its change in 
position. 

(d) Plot three separate graphs (x-y scatter plots) of:  
1. position vs. time 
2. velocity vs. time 
3. acceleration vs. time  (use the Central Difference Method results in general, and the Forward and Backward 

Difference Methods at the endpoints). 

The graphs should be the same size, and horizontally aligned left. They should be arranged, top to bottom: 
position, velocity and acceleration.  

Do your plots actually look like the derivatives / integrals of each other?  

 





1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

A
B

C
D

E
F

G
H

I
J

P
R

O
B

L
E

M
 3

: 
 V

el
o

ci
ty

 v
s.

 T
im

e 
D

at
a

t
 =

 c
on

st
an

t.
D

JD
 1

1/
01

/1
2

E
X
A
M
P
L
E
 
E
Q
U
A
T
I
O
N
S
 
a
r
e
 
s
h
o
w
n
 
i
n
 
D
6
,
 
D
7
,
 
E
7
,
 
F
7
,
 
H
7
 
a
n
d
 
I
7
.

A
cc

el
er

at
io

n
,

a
 (

m
/s

2 )
P

o
si

ti
o

n
, 


x

 (
m

)

D
at

a 
P

oi
nt

T
im

e 
(s

ec
)

V
el

o
ci

ty
 

(m
/s

)


v
/

t,
 F

or
w

ar
d 

D
iff

er
en

ce


v
/

t,
 B

ac
kw

ar
d 

D
iff

er
en

ce


v
/

t,
 C

en
tr

al
 

D
iff

er
en

ce
a 

=
 

v
/

t,
 fo

r 
pl

ot
tin

g
A

i,
 T

ra
pe

zo
id

R
un

ni
ng

 T
ot

al
 

of
 A

re
a

0
0

5.
0

=
(

C
7

-
C

6
)

/
(

B
7

-
B

6
)

0.
0

1
2

5.
5

=
(

C
8

-
C

7
)

/
(

B
8

-
B

7
)

=
(

C
7

-
C

6
)

/
(

B
7

-
B

6
)

=
(

C
8

-
C

6
)

/
(

B
8

-
B

6
)

=
0

.
5

*
(

C
6

+
C

7
)

*
(

B
7

-
B

6
)

=
H

7
+

I
6

2
4

6.
2

3
6

6.
1

4
8

6.
5

5
10

7.
7

6
12

9.
5

7
14

11
.7

8
16

13
.6

9
18

14
.5

10
20

14
.5

11
22

13
.9

12
24

11
.5

13
26

10
.7

14
28

9.
9

15
30

9.
1

16
32

8.
3

17
34

6.
2

18
36

5.
7

19
38

5.
2

20
40

5.
0

N
ot

es
:

1.
 B

ac
kw

ar
d 

an
d 

C
en

tr
al

 D
iff

er
en

ce
 d

o 
no

t w
or

k 
at

 th
e 

fir
st

 d
at

a 
po

in
t.

2.
 F

or
w

ar
d 

an
d 

C
en

tr
al

 D
iff

er
en

ce
 d

o 
no

t w
or

k 
fo

r 
th

e 
la

st
 d

at
a 

po
in

t.
3.

 
t 

=
 c

on
st

an
t, 

so
 C

en
tr

al
 D

iff
er

en
ce

 is
 a

 b
as

ic
 c

al
cu

la
tio

n.
 

If 


t 
is

 n
ot

 c
on

st
an

t, 
th

e 
fo

rm
ul

a 
is

 a
n 

ap
pr

ox
im

at
io

n 
of

 th
e 

av
er

ag
es

 o
f t

he
 F

or
w

ar
d 

an
d 

B
ac

kw
ar

d 
D

iff
er

en
ce

s.
4.

 T
he

 a
re

a,
 A

i,
 c

al
cu

la
te

d 
by

 th
e 

T
ra

pe
zo

id
 r

ul
e 

is
 th

e 
ar

ea
 b

et
w

ee
n 

da
ta

 p
oi

nt
s 

 d
at

a 
po

in
ts

 x
i 

an
d 

x
i-

1.
  e

.g
., 

A
1 

=
 0

.5
*(

y
1+

y
0)

*(
x

1-
x

0)
;  

A
5 

=
 0

.5
*(

y
5+

y
4)

*(
x

5-
x

4)



1
2
3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

A B C D E F G

EXAMPLE :  Integrating the Gaussian Function DJD 11/01/12

Integrate f (x ) = exp(-x 2) = e-x ^2

from 0 to 1
Form of Equations in each Column.

Equation in: Cell D11 Cell E11 Cell F11
=(C10)*(B11-B10) =C11*(B11-B10) =0.5*(C10+C11)*(B11-B10)

Data Point x -value f (x i ) A i , Left Rectangular A i , Right Rectangular A i , Trapezoid

0 0.0 1
1 0.1 0.990049834 0.1 0.099004983 0.099502492
2 0.2 0.960789439 0.099004983 0.096078944 0.097541964
3 0.3 0.913931185 0.096078944 0.091393119 0.093736031
4 0.4 0.852143789 0.091393119 0.085214379 0.088303749
5 0.5 0.778800783 0.085214379 0.077880078 0.081547229
6 0.6 0.697676326 0.077880078 0.069767633 0.073823855
7 0.7 0.612626394 0.069767633 0.061262639 0.065515136
8 0.8 0.527292424 0.061262639 0.052729242 0.056995941
9 0.9 0.444858066 0.052729242 0.044485807 0.048607525

10 1.0 0.367879441 0.044485807 0.036787944 0.040636875

Total Area = 
Integral 0.777816824 0.714604768 0.746210796

Accepted Value of Integral to 4 places: 0.7468

Percent Error: 4.15 -4.31 -0.08
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