| Module \#5 - Intro to Numerical Methods <br> - Integration and Differentiation <br> Engr 124 - Excel; F20 | Name: |
| :--- | :--- |

## Instructions:

- Read the background sections (pp. 1-5).
- Answer each problem on a different worksheet in one workbook (one Excel file).
- Rename each worksheet with a one or two-word title that is descriptive of the problem.
- Save an electronic copy of your file for reference. Name the file: Last_name_Mod_5.xIsx, e.g., Hancock_Mod_5.xlsx.
- When you have completed all the problems in the module, upload the Excel file (workbook) to the Canvas web site for ENGR 124.


## Formatting

- In the first Column (A), and in the first 3 rows of each worksheet, enter your Name (in A1), the Problem Title (A2) and the Date completed (A3).
- Start all work below Row 4.
- Make sure that you format each worksheet and use appropriate text (titles, prompts, etc.) so:
(1) someone who opens the worksheet knows what the worksheet does, and
(2) the user can easily use the sheet.
(3) It looks good (background fill, borders, font).


### 1.0 InTEGRATION

The integral of a function is the area under the curve generated by the function (Figure 1). In calculus, the integral can be determined by dividing the area under the curve into infinitesimal areas, $d A$; e.g., vertical strips $d x$ wide by $f(x)$ tall, as in Figure 1. By adding - integrating - all of these infinitesimal areas, the total area under the curve is determined:

$$
\begin{equation*}
I=\int d A=\int f(x) d x \tag{1}
\end{equation*}
$$

In Calculus 2, you are exposed to several techniques that allow you to integrate analytically (i.e., using variables). In other words, the result of the indefinite integral is a function; this is called a closed formed solution.
Perhaps because integration techniques can be complex, it is often forgotten that the integral is just the area of under the function. Thus, if you can visualize the function, you can estimate its area (integral).


Figure 1 The integral of $f(x), \boldsymbol{I}=\int f(x) d \boldsymbol{x}$, is the area under the $f(x)$-curve.

### 2.0 NUMERICAL InTEGRATION

Many functions can be integrated analytically using the techniques of classical calculus. Other functions are either very difficult to evaluate analytically, or cannot be integrated analytically at all. The Gaussian function:

$$
\begin{equation*}
f(x)=e^{-x^{2}} \tag{2}
\end{equation*}
$$

cannot be integrated by the basic techniques that you would learn in a standard calculus course.
In many science and engineering applications, discrete (point-by-point) data cannot be described by a "nice" function. As you drive your car, if you plot speed $v$ versus time $t$, the probability that your $v(t)$ vs. $t$ curve will be a recognizable smooth function (or even several functions pieced together) is very small. Real data is rarely described exactly by a nice function; integration is problematic.
When $f(x)$ cannot be integrated analytically (or it is difficult to integrate), numerical integration is employed. The approach is the same as that of calculus in fact, it is the basis of calculus. The total area $A$ is first divided into small areas, $A_{i}$ ( $i$ is a counting variable); the $A i$ 's are then summed (Figures 2-4).
In analytical integration, the strips have infinitesimal width $d x$ and finite height $f(x)$, and thus infinitesimal area $d A=f(x) d x$. In numerical integration, the strips have finite width $\Delta x_{i}$, and finite height $f\left(x_{i}\right)$. Thus, each area $A_{i}=f\left(x_{i}\right) \Delta x_{i}$ is finite ( $A_{i}$ has a value). The value used for $f\left(x_{i}\right)$ for each $A_{i}$ depends on the method used (discussed below).

### 2.1 Left-Rectangular Method

Consider Figure 2. The area under the $f(x)$ curve has been broken up into $n$ rectangles each $\Delta x_{i}$ wide; here $n=8$. The width of each rectangle $\Delta x_{i}$ can vary, although here they are drawn with the same width. A set of $(n+1)$ points on $f(x)$ are defined by the left and right $x$-values of each area: $\left(x_{o}, y_{o}\right),\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)$. The height of each rectangle is determined by the value of $f(x)$ at the left side of the rectangle; thus the name of the method.
The finite area under the first rectangle is:

$$
A_{1}=\left(y_{o}\right)\left(x_{1}-x_{o}\right)=y_{o} \Delta x_{1}
$$

The area under the second rectangle is:

$$
A_{2}=\left(y_{1}\right)\left(x_{2}-x_{1}\right)=y_{1} \Delta x_{2}
$$

The area under the $i$ th rectangle is:

$$
A_{i}=\left(y_{i-1}\right)\left(x_{i}-x_{i-1}\right)=y_{i-1} \Delta x_{i}
$$

The total area under the curve, $I$ (for integral), is approximated by:

$$
\begin{equation*}
I \approx \sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n} y_{i-1} \Delta x_{i} \tag{3a}
\end{equation*}
$$

where $\Delta x_{i}=x_{i}-x_{i-1}$. Again, interval $\Delta x_{i}$ is generally not constant since data are not always equally spaced.
When $\Delta x_{i}=\Delta x$ is constant (all the intervals are the same width), the area under the curve reduces to the special solution:

$$
\begin{equation*}
I \approx \Delta x \sum_{i=1}^{n} y_{i-1}=\Delta x\left[y_{o}+y_{1}+y_{2}+\ldots+y_{n-1}\right] \tag{3b}
\end{equation*}
$$

Note that when $f(x)$ is increasing, the rectangles do not fill the entire area under the curve; when $f(x)$ is decreasing, the rectangles overestimate the area under the curve. Thus, the area calculated is only an approximation.

The smaller $\Delta x$, the more accurate the solution will be (when $\Delta x$ goes to infinitesimal $d x$, we have an "exact" solution). Making $\Delta x$ smaller requires more calculations, but the computer can be set up to do all the work in a short amount of time; that's what computers were made to do.

When the interval $\Delta x_{i}$ is not constant, then you must do a little more work to set up the problem, but not much more, since the finite area is simply $A_{i}=y_{i-1}\left(x_{i}-x_{i-1}\right)$, a calculation that can be easily automated.


Figure 2 Left-Rectangular Method.


Figure 3 Right-Rectangular Method.

### 2.2 Right-Rectangular Method

Consider Figure 3. The area under the $f(x)$ curve has been broken up into $n$ rectangles each $\Delta x_{i}$ wide; here $n=8$. The width of each rectangle $\Delta x_{i}$ can vary. A set of $(n+1)$ points on $f(x)$ are defined by the left and right $x$ values of each area: $\left(x_{o}, y_{o}\right),\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)$. The height of each rectangle is determined by the value of $f(x)$ at the right side of the rectangle; thus the name of the method.

Here, the area under the first rectangle is:

$$
A_{1}=\left(y_{1}\right)\left(x_{1}-x_{o}\right)=y_{1} \Delta x_{1}
$$

The area under the second rectangle is:

$$
A_{2}=\left(y_{2}\right)\left(x_{2}-x_{1}\right)=y_{2} \Delta x_{2}
$$

The area under the $i$ th rectangle is:

$$
A_{i}=\left(y_{i}\right)\left(x_{i}-x_{i-1}\right)=y_{i} \Delta x_{i}
$$

The total area under the curve is:

$$
\begin{equation*}
I \approx \sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n} y_{i} \Delta x_{i} \tag{4a}
\end{equation*}
$$

where $\Delta x_{i}=x_{i}-x_{i-1}$. Again, the interval $\Delta x$ is generally not constant.

When $\Delta x$ is constant, then:

$$
\begin{equation*}
I \approx \Delta x \sum_{i=1}^{n} y_{i-1}=\Delta x\left[y_{1}+y_{2}+\ldots+y_{n-1}+y_{n}\right] \tag{4b}
\end{equation*}
$$

Since some rectangles underestimate the area, and some overestimate it, the area calculated is thus only an approximation. The smaller $\Delta x$, the more accurate the solution will be.

As in the previous method, when the interval $\Delta x_{i}$ is not constant, then you must do a little more work to set up the problem. However, the area is simply $A_{i}=y_{i}\left(x_{i}-x_{i-1}\right)$, and the computer can do all the work.

Note that for any set of data points, $n-1$ of the $n A_{i}$ 's of the Left-Rectangular Method and of the RightRectangular Method are the same. In general $A_{i+1}$ of the Left-Rectangular Method equals $A_{i}$ of the RightRectangular Method (e.g., $A_{2, \text { left }}=A_{1, \text { right }}$ ), as seen in Figures 2 and 3. The numerical difference of the two approximations is the difference in areas between $A_{1}$ of the Left-Rectangular Method, and $A_{n}$ of the RightRectangular Method.

$$
\begin{aligned}
& I_{L}=\Delta x y_{o}+\Delta x\left[y_{1}+y_{2}+\cdots+y_{n-1}\right] \\
& I_{R}=\Delta x y_{n}+\Delta x\left[y_{1}+y_{2}+\cdots+y_{n-1}\right]
\end{aligned}
$$

### 2.3 Trapezoidal Method

Rectangles of finite width are not the best shape to estimate the area under a curve. A better estimate is made using trapezoids, as illustrated in Figure 4. The area of a trapezoid is its average height multiplied by its width.
The area under the first trapezoid is:

$$
A_{1}=\left(\frac{y_{0}+y_{1}}{2}\right)\left(x_{1}-x_{o}\right)=\left(\frac{y_{0}+y_{1}}{2}\right) \Delta x_{1}
$$

The area under the second trapezoid is:

$$
A_{2}=\left(\frac{y_{1}+y_{2}}{2}\right)\left(x_{2}-x_{1}\right)=\left(\frac{y_{1}+y_{2}}{2}\right) \Delta x_{2}
$$

The area under the $i$ th trapezoid is:

$$
A_{i}=\left(\frac{y_{i-1}+y_{i}}{2}\right)\left(x_{i}-x_{i-1}\right)=\left(\frac{y_{i-1}+y_{i}}{2}\right) \Delta x_{i}
$$

The total area under the curve is therefore:

$$
\begin{equation*}
I \approx \sum_{i=1}^{n} A_{i}=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i-1}+y_{i}\right) \Delta x_{i} \tag{5a}
\end{equation*}
$$

where $\Delta x_{i}=x_{i}-x_{i-1}$. Again the interval $\Delta x$ is generally not constant.

When $\Delta x$ is constant, Eq. (5a) reduces to:

$$
\begin{align*}
I & \approx \Delta x \sum_{i=1}^{n}\left(\frac{y_{i-1}+y_{i}}{2}\right)=\frac{\Delta x}{2} \sum_{i=1}^{n}\left(y_{i-1}+y_{i}\right) \\
& =\frac{\Delta x}{2}\left[y_{o}+2 y_{1}+2 y_{2}+\ldots+2 y_{n-1}+y_{n}\right] \\
& =\frac{\Delta x}{2}\left[y_{o}+y_{n}+2\left(y_{1}+y_{2}+\ldots+y_{n-1}\right)\right] \tag{5b}
\end{align*}
$$

The Trapezoidal Rule is just the average of the Left and Right-Rectangular Methods.


Figure 4 Trapezoidal Method.

### 2.4 SIMPSON'S RULE

Even better estimates can be made by fitting a parabola (quadratic) curve through three adjacent data point. These points are ideally equally spaced, distance $\Delta x$ apart. Without derivation, Simpson's $\mathbf{1 / 3}$ Rule gives the area under such a curve:

$$
\begin{equation*}
I \approx \frac{1}{3} \sum_{i=1,3,5 \ldots}^{n}\left(y_{i-1}+4 y_{i}+y_{i+1}\right) \Delta x \tag{6}
\end{equation*}
$$

Simpson's 1/3 Rule, Simpson's 3/8 Rule, and other advanced numerical integration techniques, will not be covered in this course.

### 3.0 DIFFERENTIATION

The derivative of a function is the slope of the curve at a particular location $x$ :

$$
\begin{equation*}
f^{\prime}(x)=\frac{d f}{d x}=\text { slope of } f(x) \text { at } x \tag{7}
\end{equation*}
$$

### 4.0 NUMERICAL DIFFERENTIATION -

## Forward Difference Method, Backward Difference Method, and Central Difference Method

For a set of data points, an approximation for the derivative at any point is the slope of a straight line between two points near the point of interest $x$ :

$$
\begin{equation*}
f^{\prime}(x) \approx \frac{\Delta f}{\Delta x}=\frac{\Delta y}{\Delta x} \tag{8}
\end{equation*}
$$

where $\Delta y$ and $\Delta x$ are the change in $y$ - and $x$-values between the two points. The derivative is the ratio of the difference in the $y$-values to the difference in $x$-values between two points.

Consider Figure 5. The data points on the curve are: ( $x_{0}$, $\left.y_{o}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right), \ldots\left(x_{n}, y_{n}\right)$.

The slope at any point ( $x_{i}, y_{i}$ ) can be approximated using the Forward Difference Method. This method gives the slope of the line between $\left(x_{i}, y_{i}\right)$ and the next point "forward" $\left(x_{i+1}, y_{i+1}\right)$. For example, the Forward Difference Method approximates the slope at $x_{3}$ as:

$$
f^{\prime}\left(x_{3}\right) \approx \frac{\left(y_{4}-y_{3}\right)}{\left(x_{4}-x_{3}\right)}=\frac{\left(y_{4}-y_{3}\right)}{\Delta x_{4}}
$$

Or, the slope at ( $x_{i}, y_{i}$ ) can be approximated using the Backward Difference Method. This method gives the slope of the line between $\left(x_{i}, y_{i}\right)$ and the next point "backward" $\left(x_{i-1}, y_{i-1}\right)$. The slope at $x_{3}$ is then:

$$
f^{\prime}\left(x_{3}\right) \approx \frac{\left(y_{3}-y_{2}\right)}{\left(x_{3}-x_{2}\right)}=\frac{\left(y_{3}-y_{2}\right)}{\Delta x_{3}}
$$

The Central Difference Method gives a better approximation than the previous two methods (Figure 5). The Central Difference Method slope is the average of the slopes of the Forward and Backward Difference Methods. The slope at $x_{3}$ is:

$$
f^{\prime}\left(x_{3}\right) \approx \frac{1}{2}\left[\frac{\left(y_{4}-y_{3}\right)}{\Delta x_{4}}+\frac{\left(y_{3}-y_{2}\right)}{\Delta x_{3}}\right]
$$



Figure 5 Estimating the slope at $x_{3}$ using the three difference methods. A smaller $\Delta x$ would increase the accuracy of the methods.

Assuming $\Delta x_{i}$ is constant, then the Central Difference approximation for the slope at $x_{3}$ is the average slope between $\left(x_{2}, y_{2}\right)$ and $\left(x_{4}, y_{4}\right)$ :

$$
f^{\prime}\left(x_{3}\right) \approx \frac{\left(y_{4}-y_{2}\right)}{2 \Delta x}
$$

Equations 9a 10a, and $11 a$ give the general expressions for the slope $x_{i}$ for each method. The expressions in Equations $9 b, 10 b$ and 11b, are only for the case when $\Delta x$ is constant.

## Forward Difference:

$$
\begin{align*}
& f^{\prime}\left(x_{i}\right) \approx \frac{\left(y_{i+1}-y_{i}\right)}{\left(x_{i+1}-x_{i}\right)}  \tag{9a}\\
& f^{\prime}\left(x_{i}\right) \approx \frac{\left(y_{i+1}-y_{i}\right)}{\Delta x} \tag{9b}
\end{align*}
$$

## Backward Difference:

$$
\begin{align*}
f^{\prime}\left(x_{i}\right) & \approx \frac{\left(y_{i}-y_{i-1}\right)}{\left(x_{i}-x_{i-1}\right)}  \tag{10a}\\
f^{\prime}\left(x_{i}\right) & \approx \frac{\left(y_{i}-y_{i-1}\right)}{\Delta x} \tag{10b}
\end{align*}
$$

## Central Difference

$$
\begin{gather*}
f^{\prime}\left(x_{i}\right) \approx \frac{1}{2}\left[\frac{\left(y_{i+1}-y_{i}\right)}{\Delta x_{i+1}}+\frac{\left(y_{i}-y_{i-1}\right)}{\Delta x_{i}}\right]  \tag{11a}\\
f^{\prime}\left(x_{i}\right) \approx \frac{\left(y_{i+1}-y_{i-1}\right)}{2 \Delta x} \tag{11b}
\end{gather*}
$$

As $\Delta x$ decreases, the approximation for the slope improves. In the limit, $\Delta x$ goes to $d x$.

### 4.1 Numerical Differentiation - <br> The Second Derivative

The second derivative is the rate of change of the slope. Using the slopes from the Forward and Backward Difference Methods (Equations 9 and 10), and taking $\Delta x$ as constant, the second derivative at $x_{i}$ is approximated by:

$$
\begin{aligned}
f^{\prime \prime}\left(x_{i}\right) & =\frac{d^{2} y}{d x^{2}} \approx \frac{\Delta f^{\prime}}{\Delta x} \\
& =\frac{f^{\prime}\left(x_{i}\right)_{\text {forward }}-f^{\prime}\left(x_{i}\right)_{\text {backward }}}{\Delta x} \\
& =\frac{\left[\left(y_{i+1}-y_{i}\right) / \Delta x\right]-\left[\left(y_{i}-y_{i-1}\right) / \Delta x\right]}{\Delta x}
\end{aligned}
$$

Simplifying:

$$
\begin{equation*}
f^{\prime \prime}\left(x_{i}\right) \approx \frac{y_{i+1}-2 y_{i}+y_{i-1}}{\Delta x^{2}} \tag{12}
\end{equation*}
$$

Equation 12 is the Central Difference second derivative.

Not surprisingly, there is a Forward Difference second derivative (just increase the subscripts by one):

$$
\begin{equation*}
f^{\prime \prime}\left(x_{i}\right) \approx \frac{y_{i+2}-2 y_{i+1}+y_{i}}{\Delta x^{2}} \tag{13}
\end{equation*}
$$

and a Backward Difference second derivative (just decrease the subscripts by 1 ):

$$
\begin{equation*}
f^{\prime \prime}\left(x_{i}\right) \approx \frac{y_{i}-2 y_{i-1}+y_{i-2}}{\Delta x^{2}} \tag{14}
\end{equation*}
$$

The Forward and Backward Difference second derivatives are not as accurate as the Central Difference second derivative. Use the Central Difference Method whenever possible.

### 4.2 Numerical Differentiation- <br> End Points

Note that each differentiation method requires a data point before and/or after the point of interest. This requirement becomes a problem at the end points ( $x_{o}$ and $x_{n}$ ); there is no data point to the left of $x_{0}$, and no data point to the right of $x_{n}$. At the end points, only one of the three methods works.

At the leftmost data point, the Forward Difference Methods must be used to estimate slopes and second derivatives. At the rightmost data point, the Backward Difference Methods must be used.

For all interior points (non-end points, $x_{1}$ to $x_{n-1}$ ), the Central Difference Method should be used; it is the most accurate.

As a consequence of having to use the Forward Difference Method at the leftmost point, and the Backward Difference that the rightmost point, the calculated derivatives (first and second) at the endpoints are generally less accurate than the derivatives calculated at the rest of the points. However, the two endpoints typically represent a very small fraction of the overall data.

## PROBLEMS for MODULE 5

Note: For hints on integrating with Excel, see the last two pages of this handout (two Excel worksheets).

## Problem 1 Integration

Integrate $1 / x$ from 1 to 2 :

$$
I=\int_{1}^{2} \frac{d x}{x}
$$

Integrating by hand, to 7 digits: $\quad I=\int_{1}^{2} \frac{d x}{x}=\left.\ln (x)\right|_{1} ^{2}=\ln (2)-\ln (1)=\ln (2 / 1)=0.6931472$
(a) Use the Left-Rectangular Method and Excel to integrate numerically.

To do so, break the distance from 1 to 2 into 10 intervals of equal width, i.e., 11 points ( $x_{0}=1.0, x_{1}=1.1, x_{2}=1.2 \ldots$ $x_{10}=2.0$ ), which are the sides of 10 rectangles. Note the first data point is ( $x_{0}, y_{0}$ ).
Calculate the area of each rectangle individually, $A_{i}=y_{i-1} \Delta x$, and then add all 10 areas $A_{i}$ together. Since this is the Left-Rectangular Method, the heights of the rectangles are: $y_{0}, y_{1}, y_{2} \ldots y_{9}$. The first area is $A_{1}=y_{0} \Delta x$.

See Figure 6 for sample table set-up.
(b) Use the Right-Rectangular Method and Excel to integrate numerically.

Break the distance from 1 to 2 into 10 intervals of equal width (i.e., use 10 rectangles).
Calculate the area of each rectangle individually, $A_{i}=y_{i} \Delta x$, and then add all 10 areas $A_{i}$ together. The first area is $A_{1}=y_{1} \Delta x$.
(c) Use the Trapezoidal Method and Excel to integrate numerically.

Break the distance from 1 to 2 into 10 intervals of equal width (i.e., use 10 rectangles).
Calculate the area of each trapezoid individually, $A_{i}$, and then add all 10 areas together. The first area is $A_{1}=$ $\left[\left(y_{0}+y_{1}\right) \Delta x\right] / 2$.
(d) Use Excel to calculate the percent error of each method with respect to the actual value of 0.6931472. Display the error below the calculation of each total area $\Sigma A_{i}$. The formula for the percentage errors is:

$$
\% \text { error }=\frac{\text { approximation }- \text { actual }}{\text { actual }} \times 100 \%
$$

A positive error indicates an overestimation; a negative error indicates a underestimation.

A recommended format for Problem 1 is shown in Figure 6.

| Integration of 1/x from 1 to 2. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Constant $\Delta x=0.1$ |  |  |  |  |  |
| Data Point |  |  | Left | Right | Trapezoid |
| $i$ | $\boldsymbol{X}_{i}$ | $y_{i}$ | $\boldsymbol{A}_{\text {i }}$, | $\boldsymbol{A}_{\text {i, }}$ | $\boldsymbol{A}_{\text {i }}$, |
| 0 | 1.0 | $y_{0}$ calc. |  |  |  |
| 1 | 1.1 | $y_{1}$ calc. | $A_{1}$ calc. | $A_{1}$ calc. | $A_{1}$ calc. |
| 2 | 1.2 |  | $A_{2}$ calc. | $A_{2}$ calc. | $A_{2}$ calc. |
| $\ldots$ | $\cdots$ | ... | $\cdots$ | $\ldots$ | $\cdots$ |
| 10 | 2.0 | $y_{10}$ calc. | $A_{10}$ calc. | $A_{10}$ calc. | $A_{10}$ calc. |
|  |  |  |  |  |  |
|  |  | Total Area: | $\Sigma A$ calc. | $\Sigma A$ calc. | $\Sigma A$ calc. |
|  |  | Error: | Error calc. | Error calc. | Error calc. |

Figure 6 Sample format for Problem 1. Excel should calculate the values indicated by the typeface Courier New (e.g., $y_{0}$ calc., $A_{1}$ calc.).

## Problem 2 Integration-20 intervals

(a) Repeat Part (a) of Problem 1, but with 20 rectangles. In other words, use the Left-Rectangular Method, and break the distance from 1 to 2 into 20 intervals of equal width.
(b) Calculate and display the error in the 20-interval Left-Rectangular result.
(c) For the Left-Rectangular Method, compare the 20 -interval solution (Prob. 2a) to the 10-interval solution (Prob. 1a). Indicate in the worksheet which solution is more accurate.

## Problem 3 Derivative and Integral

Consider the following $x-y$ data:

| $\boldsymbol{x}$ | $\boldsymbol{y}$ |
| ---: | ---: |
| 0 | 0 |
| 0.5 | 2.0 |
| 1.1 | 5.0 |
| 2.2 | 8.0 |
| 2.8 | 10.0 |
| 4.0 | 12.0 |
| 5.6 | 17.0 |
| 7.0 | 18.0 |
| 8.4 | 20.0 |
| 10.0 | 22.0 |

Note: The spacing $\Delta x$ for this problem is not constant.
(a) Use the Forward Difference Method to approximate the slope at every point (except the last).
(b) Use the Backward Difference Method to approximate the slope at every point (except the first)
(c) Approximate the area under the curve formed by the $x-y$ data using the Right-Rectangular Method.

## Problem 4 Integral and Derivative:

Given the Velocity-Time Data, Determine the Distance Traveled and the Acceleration over the Entire Time-Interval.

Note: For help in setting up the worksheet for this problem, see the next page: "PROBLEM 3: Velocity vs. Time Data" The time-step $\Delta t$ is constant. Use the data shown.

## Consider the velocity-time data in the spreadsheet on the following page.

Set up an Excel worksheet to solve for the object's acceleration and position with time. Then, plot (1) position vs. time, (2) velocity vs. time, and (3) acceleration vs. time. In particular:
(a) Create an Excel worksheet like that on the following page. Enter the velocity vs. time data shown.
(b) Acceleration is the derivative of velocity (the slope of the $v-t$ curve). Calculate the acceleration of the object at all times using all three derivative methods - Forward, Backward, Central (note that at each endpoint, only one method can be used).
(c) Change in position is the integral of velocity (the area under the $v-t$ curve). Calculate the area under the $v$ - $t$ curve using the Trapezoidal Rule. If the object starts at $x=0$, then its position at time $t$ (location) is also its change in position.
(d) Plot three separate graphs ( $x-y$ scatter plots) of:

1. position vs. time
2. velocity vs. time
3. acceleration vs. time (use the Central Difference Method results in general, and the Forward and Backward Difference Methods at the endpoints).

The graphs should be the same size, and horizontally aligned left. They should be arranged, top to bottom: position, velocity and acceleration.

Do your plots actually look like the derivatives / integrals of each other?



